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SUMMARY

A new method of probability density estimation is investigated

which exploits the Fourier series representation of a density function.

The new method employs density estimators p,q5), p = 0,1,2,... and

q . 0,1,2,..., which are such that is a Fourier series (Kronmal-

Tarter type) estimator and f (-)'is an autoregressive estimator. EachKP-'9
of the estimators pqf. )I(referred to as ARMA estimators) is shown to

depend upon the e:1-transform, thus providing a strong motivation for,n)

the use of estimators with both p > 0 and q > 0. Small and large

sample properties of ARMA density estimators are obtained and a

data-based method of selecting optimal values of p and q is proposed.

The results of a simulation study show that, for the densities con-

sidered, a savings in integrated square error is attained by using

ARMA, rather than Fourier series, density estimation.
\S
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CHAPTER I

INTRODUCTION

1.1 Introduction

The purpose of this work is _to investigate

a method of probability density estimation which is based upon what

will be called the ARMA method of approximating a function. The

ARIMA method employs representations of the form
q 

oi
k -

Because 1- of th ie pli alt ofteA&moe ntmse pe, representaion suhas(.1 avler atrlxoivto

to approximate the real-valued function f() over the interval

[ucedinThe acronym AA is used because of the fact that, if

fmst is nonnegative, its numerator may be expressed asin

p3,qq

k1-8 Ie ix aqe iqx 2 for all z c [- ,r] •

Expressed in this way, f p~q() is seen to have a form equivalent to

the spectrum of an auto-regressive, moving average (ARKA) process.

Because of the wide pplicability of the ARM model in time

series, representations such as (1.1) have a very natural motivation

in spectral estimation. The motivation, to be developed fully in

succeeding chapters, for their use in probability density estimation

mist obviously be somewhat different. 'For the present we simply point

out that the relationship of f pq() to a numerical analysis tool

known as the a -transform implies that ARM representations aren

attractive as an approximation scheme. Their value as an approxi-

mation scheme in turn suggests their possible value in the estimation

setting.

.I.
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In Chapter II definitions of the constants B0k=Ol ,...,q)

and ak(kl,...,p) will be given which, for a given function f(.),

uniquely define an approximator f pCq.) for each pair of values

(p,q). The approximator so defined depends only upon the Fourier

coefficients *(0), *(1),...,*(p+q), where

*(v) - IeiVXf(x)dx, lvi " 0,1,2,...

(note that 0(-v) -#(v)). Thus if f(-) is the probability density

function of a random variable with support [-r,], estimators

fp(.) of f(.) can be formed by estimating the Fourier coefficients

of f(-).

In light of the many existing techniques of density estima-

tion, one might reasonably question the consideration of the class

of estimators just described. In order to be of more than simply

academic interest, a new technique should either have the potential

for improvement over, or shed some informative light on existing

techniques. Hopefully, it will be shown that the method of density

estimation being proposed satisfies both of these requirements with

respect to

i) Fourier series density estimators, and

(ii) autoregressive density estimators.

It will be seen shortly that these two classes of estimators

are members of the general class of AMA density estimators. Before

embarking on an investigation of ARMA estimators, it will thus be

expedient to briefly discuss the origin and properties of Fourier

series and autoregressive density estimators.
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1.2 Fourier Series Density Estimation

Cencov (1962) first suggested the use of Fourier series

ideas in the estimation of a probability density function. Let

L2 (r) be a Hilbert space whose inner product is defined by2 M
04 I *6)O(x)r(x)dx,

-m

where r is a weight function. Let f(-) be the density of a random

variable X and assume that f(.) e L2(r). Now, suppose E is an

arbitrary m-dimensional subspace of L2(r) with orthonormal basis

{CIA$,.... .). The best mean square error approximation of f(x)

in E is
m m

f M(x) - kmZkm(x)
k-1

wher~

If a random sample Xl,...,X n is obtained from f('), then Cencov

suggests estimating f(x) by

f W E Z (x )  •
k-l

where

#k 3 :l kmX)r(X,)

Cencov points out that E[Ilfa(x)-f(x)f1 21 can be made arbitrarily

small by choosing a sufficiently good approximating subspace Em

and then taking a large enough number n of observations.

Kronmal and Tarter (1968) have investigated a special case

of the above by considering the weight function r(x) b-a I a,b] (x)

and the orthonormal system

.....
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Based on this system an estimator of f(x) (x £ [a,b]) is

(x) -y --" sk2 k x-a

where
S 2 E-cos "Iba C~~] Xi)(b-a)n -a)

k b-a (a,b b i

It can be shown that

cov( ,, [ t-.L ( + +k) - 0 Q> k)
k) 2-nb-a J-k Oj+k ik]

where
2 b

2 f- f(x) cosffk( x-a) dx
k b a -a d

a

This leads to a simple expression for the mean integrated square

error (MISE) of f(-), namely

E [f=(f (x) - i(x)) r2C)dx] 2n~ -b- .

-- m + 2k 0)

+n k-l b-a k

2
+ I k

k'.m+l

Making use of these results Kronmal and Tarter prove the following

theorem.

Theorem 1.1 If the Fourier cosine series of the density f(-)

converges uniformly and if m - o(v'n), then

A 2
ii. E(f Mx) W f (x)) - 0 (uniformly in xe[a,bl)

and
li. 1bj (x) - f(x)) 2dx -0.

~a
m~ a



6

The importance of this theorem is its establishment of the rate

at which the truncation point m may increase with the sample size

in order for f (.) to be a consistent estimator of f(-). In

addition to this asymptotic result, Kronmal and Tarter devise a

procedure for choosing an m which, for a given sample size,

minimizes the MISE.

Approaches for estimating f(.) using different orthogonal

systems of functions have also been considered. For example,

Schwartz (1967) has investigated the use of Hermite polynomials.

In the present study, however, our principal interest will be in

the trigonometric systems because of their close association with

ARMA approximators and estimators.

1.3 Autoregressive Density Estimation

Carmichael (1976) has adapted the idea of autoregressive

spectral estimation to the estimation of a probability density. In

order to briefly outline Carmichael's method, let f(.) be the pdf

of a random variable X with support -71T ]. Define R(.) by
R(v) f 7 e-VXf(x)dx , jvl - 0,1,2,...

Let (alm,a2m•..a mm) be defined as the solution (assumed unique)

of the following system of Yule-Walker equations:

1 R(-l) ... R(-m+l)" 'L 1M R(l)

R(l) 1 ... R(-m+2) -2m R(2)

R(m-l) R(m-2) ... 1 . *m R(m)
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The m-th order approximator of f(x) is then defined by

Carmichael as
k m 1

f(x) - - 1
-ae-a2me - .- Cmm

where k is chosen so that R(O) - 1.
m

The term approximator is appropriate since it can be shown

that
e-ivxf (x)dx - R(v), IvI - 0,l,...,m

When observations are available from f(-), an estimator f,(-) can

be similarly obtained by first estimating R(.).

Carmichael provides two motivations for the approach just

outlined. One motivation involves regarding {R(v):Ivl - 0,1,...l

as the correlation sequence of a complex-valued, stationary time

series. The spectral density f(-) of this hypothetical time series

is approximated by the mth order autoregressive scheme f (').U

Another motivation follows from showing the equivalence of f m)

to an approximator formed by constructing a set of polynomials in

ix
e which are orthogonal with respect to the inner product

(g,h) - f g(e ) h(e ix) f(x)dx.

ix ix

The weak consistency of f (.) as an estimator of f(.) hasm

also been established by Carmichael. This result may be stated

as follows. Let X1,...,X be a random sample from f(.) and

R(v) - -v
j-

Then f (.) is formed by replacing R(.) by R(') in the system ofIa

1~
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equations presented previously. If f(.) satisfies certain

regularity conditions and

3/2
Jim 0 , thenM./
n-s-

(x) - f(x) 0 uniformly in x, where f,(x)-f(x) a.e.(-r,r].

Parzen (1979) proposes an additional application of auto-

regressive representations in the estimation of density-quantile,

or fQ, functions, where f(-) and Q(.) are respectively, the pro-

bability density and quantile function of a random variable X and

fQ(u) - f(Q(u)), 0 < u < 1 .

Although density-quantile estimation will not be investigated in

this work, the ARMA method is easily adapted to this problem. It

is hoped that some of the forthcoming observations pertaining to

density estimation will find applications in the estimation of

fQ and other types of functions, such as hazard functions.

AI
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CHAPTER_ II

THE DETERINISTIC SETTING: fp,q () AS AN APPROXMTOR OF f(-)

2.1 Definitions and Assumptions

In the current chapter we will consider the problem of

approximating a function using a finite number of its Fourier

coefficients. To facilitate our discussion the following

definitions and assumptions are stated. The notation pre-

sented here will be followed consistently throughout the

remainder of this work.

(i) f(o) denotes a real-valued function with domain

of definition [-ww], which we wish to approximate or estimate.

Unless otherwise stated, it shall be assumed that f(-) is square

integrable on [-w,w], i.e.,

f2 (x )dx <

(ii) The sequence {$(v): lvi - Ol,2,...,} of Fourier

coefficients of f(-) is defined as

#(v) - e-V f(x)dX, Ivi - 0,1...

Under the integrability condition in (i) j¢(v) I is finite for

all v. Note that if f(-) is a probability density function,

*(.) is simply its characteristic function evaluated at the

integers.

2!
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(iii) Unless stated to the contrary, it will be assumed that

f(-) satisfies conditions which ensure that

f(x) - E ,(v)efvx, a.e.[-rw].

One such set of conditions (see Apostol (1973)) is that f(,) be

continuous and of bounded variation throughout [-w, ].

(iv) f(-) will be said to have an ARMA representation iff

qI q v
E. Ove'v

f(x) = -q a.e.11-l_1le'x _ .. .- a p e lp j  ~ .[ w

where p and q are non-negative integers, 0v(vj - 0,1,...,q) and

c(k - 1,...,p) are complex constants with Ov - Tv , and the

roots of 1 - a 1l-...-o xp - 0 all lie outside the unit circle.

2.2 Discussion and Definition of f C,q(-)

Before moving to the stochastic setting, the ARMA method

will be motivated by demonstrating its value as a deterministic

approximation scheme. In the current section the ARMA approxi-

mator f pA(-) is defined and shown to be related to the en-trans-Ipform. In Section 2.3 truncated Fourier series, autoregressive,

and ARMA approximators will be compared as to their ability to

approximate a function f(.). Comparisons will be made on the

basis of how well the approximator fits f(') visually, and also

by means of the measure
ISE(f*) - f(f*(x) - f(x))2dx,

-iT
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where f*(.) approximates f(-).

Given the Fourier coefficients 0(0), *(1),..., (m) (note

4(-v) - *(v)) of a function f(.) with a series representation as

in the previous section, the most obvious choice for an approxi-

mator of f(x) is
1 iv

f m -(x)  -E (v)e

The error associated with this approximation is

which can be made arbitrarily small by choosing m large enough.

The convergence of f (-) to f(-) is uniform if f(-) is continuous

m

and of bounded variation (see Apostol (1973)). In addition to

the pointwise error of f C), we have, by Parseval's theorem,m

ISE(f ) - t (v)17
m -+

In certain applications or for certain functions, a suitable

choice for m may be prohibitively large. In other words, f Ca)

based upon a reasonable number m 0 of Fourier coefficients may not

provide an adequate approximation to f(-). Suppose, however, that

*(mO+l), *(m0+2),... are in some sense related to the previous

Fourier coefficients. It may then be possible to exploit this

relationship and construct an approximator based on

(m 0 ) which has better error properties than does f C).m 0

A model for the relationship between the Fourier coefficients

of f(-) which is often at least approximately satisfied is

{*(v)) c L(p,A) for v > q . (2.1)

where (f m e L(n,A) for m > m0 if there exists a smallest integer

n > 0 and a set of ci's such that



12
f f 1  +... cf " 0, m > m O.mr 1.-in m-n0

In the following theorem we establish the equivalence of

functions whose Fourier coefficients satisfy (2.1) and

functions having AR A( representations.

Theorem 2.1 Suppose the roots of

1 - a x-...-M xp - 0

all lie outside the unit circle. Then f(.) has an ARMA repre-

sencation of the form

q ivxc
r 0 e

f(x) - -pxQ a.e. C-r,i]

p e 
1

iff (v) - a I (V-l) a ., *p(V-p) - 0, v •> q.

Proof: Suppose first that *(v) satisfies the prescribed

difference equation. Now consider the function f*,(.)
p~q

satisfying

q iv x

v--q for x C E-, W1
f;,q(x) L_1 ... - ii op e

vhere the v are chosen so that

fIre'J'f* (x)dxc - ** ( for 1 a0,1,...,q.

-W ppq pq() J

The system of 2q4l equations which must be solved to find the

$v is readily seen to be linear, and it is tacitly assumed that

the system has a solution.

-. .. . % ,_.] ., ".. . .. ...... ... .. . . , . . . .. .,.. . . ..... .. . .. ,
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Now consider, for v > q,

0*,(v) - a04* (v-i) - a.. - a **,(V-p)
p ,q 1 p,q p p q

f (eiVC e-i(v-l)x-..._pe-i (V-P)X)f* (x)dx
1 p p q

f v e -iVx (1-ale ix eipx)f, (x)dx

-iVXeiqx q - i x ( q - v ) dx

S - v=-
- ( 1 -7c-Le-iX _ .- e- tpx )

P
q Bvq-V d

zv-q-1 EOZ d
-1 v-q

(1--a 1z - ... - zp)

Since v > q and the roots of 1 -a1z-...-a P p 0 are outside the

unit circle, it follows that the above integrand is analytic

on and inside the unit circle. Thus, by the Cauchy-Goursat

theorem the integral is zero. It follows that * (v) satisfies
p,q

the same difference equation as (v) for v > q. Since 4(v) -

* (v) for v - 0,l,2,...,q we must then have (v) - 0* (v) for

p~q p ,q

Ivi M 0,1,2,.... By the uniqueness of the Fourier coefficients

of square integrable functions (and it is easily shown that a

function having an ARM& representation is square integrable), it

follows that

f(x) - f* (x) a.e. [-v,w]
ptq
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One part of the theorem is thus proven. By mimicking a portion

of the above argument it is easily shown that

*(v-al #(V-1)- .- a * (v-p)- 0 , v > q

whenever f(-) has the stated ARMA representation.

Implicit in Theorem 2.1 is a method for forming an approxi-

mator of f(-) in the situation where

alv - a1 (-)-.- (v-p) -0, v > q.

Given 0(O), *(l), *(l,.,4--) (p+q) an approximator

f* (-) can be constructed by first solving the system of
p ,q

equations

ap1 (q) + a 2 (q-1)+...+a O(q-p+l) - O(q+1)

a 1O(q+l)+aZ (q) +...4GLP (q-p+2) - O(q+ 2 ) (2.2)

C&1 *(q4-1)4% 2 (q+p-2)+...a p(q) - *(q+p)

for alt ... ,9 . The coefficients 00 B)B1**B9q can then be

found by forcing ** (v) - #(v), lVI - 0,l,...,q, where
p ,q

**(v) I a *-ivxf* (r)dx and
p ,q p ,q

q xSvo
f* (x) -P1

p,q ai - - -

Under the assumption that the roots of 1 -aix-..aXP 0

lie outside the unit circle, the approximator f* ()satisfies
p ,q
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*, ,qV) - *(v), Jvi - 0,1,...,p+q . (2.3)

This property follows from the fact that by (2.2) and Theorem 2.1,

#(v) and ** v) both satisfy the difference equation
p,q

y(v) - a y(-l)-. ..- p y(V-p) - 0

for v - q+l,...,q+p subject to the initial conditions y(v) - ON),

vJ 0,,...,q.

Property (2.3) Justifies the use of the term approximator

for kq(.) even when () is not well modeled as the solution to

a (d," Fevence equation. The following error properties of f* (-)
p,q

are a simple consequence of (2.3).

Jf(x) - f*qx) W1~ E($(1 - * (v))e ivX~
vl>p~q pq

(2.4)

ISE(f*, z - I0(v) -* (v)12P E q) = v-p+l -p~qV

Although the method discussed above for constructing f* ()
pq

is informative, it can be quite cumbersome analyticall. The approxi-

mator f pq(.) to be defined below will be shown to be identical to

f* (-) under the assumption that the roots of 1 - a x - ... - pXp  0
p , q 1 p

lie outside the unit circle. However, fpq (') has the advantage of

being much simpler to construct than f* (.). In addition, the

dependence of f pq.) upon a numerical analysis tool known as the

en-trnsform provides important insight into why the ARXA method

is of value as an approximation scheme.

Before defining f pq.) we give the following definition of

• - o p q
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the e -transform.n

Definition 2.1 Given the sequence {ak,ak+l,...,} of complex
J

numbers and the partial sums A - Z a we define (for mn+k-1)
j
v-k

A A .. Arn-n M-n+i m

a .n+l a .-n+2 ... a,

a a 1  ... n

enl (Amn)

1,,+ 1mr+ ... 1m+

a m a,+ ... am+am am+l "" m+n

whenever this quantity is defined. If both numerator and

denominator are zero, then define en(Am) - e (A ). If only
n m n-i m

the denominator is zero, then e (A) -

The important result associated with the e.-transform

is that in a wide class of problems en (A ) is a better approxi-

mation to A. than is AU.,n. With Definition 2.1 we are now in

a position to define the approximator f Pq(.).

Definition 2.2 Let [#(k), *(k+l),...} be a sequence of Tourier

coefficients of f(-). Then the approximator f p() Of f(.) is

p~q
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defined as

f (x) - -[ (O)+2Real{e (F (X))-F , x -,],

wee psq 2w p q 0

where

q 1 p +, q + 1- p<0 and
k- 1,q+1-p>0

kk

~ ivx
E *(v)e j 2 k

v-k
F (x) =

0 , jck

Since

f(x) "-L o(v)e v x - [(0)+2Real( E (v)eivx)]
2ww_ v-1

ivxep (F qx)) - Fo(X) is seen to approximate Z 4(v)e i  . The
v-1

extent to which e p(Fq(x)) - Fo(x) is a better approximator of

this quantity than Pfq,(v)eivx depends upon the particular
v-1

sequence {(v)1. Conditions under which en (Am) converges more
n+m

rapidly (as m -) to ; a than does Z a have been estab-
v-k v v-k v

lished by different authors, including Shanks (1955), McWilliams

(1969), and Gray, Houston, and Morgan (1978). Except for Theorem

2.2, however, the discussion of these conditions will be postponed

until Chapter IV. For the present, we simply note that they pro-

vide an important motivation for using the en-transform in situa-

tions where (am) is not the solution of a difference equation.

The strongest result concerning the e -transform is the
n

following.
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Theorem 2.2 Suppose the complex sequence {a I is an element ofa

L(n,A) for a > m0 and that the roots of the associated character-

istic equation are outside the unit circle. Then

a

e(A)- E a for all m > 0v-k

Proof: See Gray, Houston, and Morgan (1978) for the case of

{a m I real. The extension of the proof to include {aMI complex

is trivial.

By applying the results of Theorems 2.1 and 2 . 2 , the equi-

valence of f* (.) and fp,q() is easily shown. Morton (1981)

has also proven this result in the context of power spectral

density estimation.

Theorem 2.3 Let fp,q (.), f*,q (-), and , be as defined

previously, and suppose that the roots of 1-a X-...-a p xp 0 are

outside the unit circle. Then we have

f* (.) 3 fp(.)

p "q ppq

Proof: Let k be as in Definition 2.2 and consider

W

1: * v)e x , where ** (v)
v-k p'q pq

is the vth Fourier coefficient of f* (). Since (e (v))

p ,q p q
satisfies a pth order difference equation for v > q, then so does

{,* (v) e v x } ' Therefore, by Theorem 2.2, we have

p q a
ivx

e (F*(x)) *E ** Wve
p q vkPp
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This implies that

p(q(0) + 2Real( epF*x)) .F*x))]

[0-..(* (0) + 2Real( Z 0* Mve iv)] M f* Wx

1 pqv-1 pq =

However, since *,q(v) - *(v) for lvi - 0,1,...,p+q it follows
p,qv)-Ovfo v

that

(0) + 2Real{ e CF*Cx)) - *(x)l]
IT pq p q 0

- 2(CO) + 2Real e (F (x))-F(x) ] - f (X).

p qpq

Thus, f (X) - f* Cx).
p,q p ,q

Since f* () and f C-) are equivalent under the condition
pq p,q

(which shall henceforth be referred to as condition S) that the

roots of 1 - alx - ... - a xp -0 lie outside the unit circle, it
1 p

follows that f N) satisfies the error properties of (2.4) under
p,q

condition S. However, the following two important facts are noted

at this time.

(a) If condition S is not satisfied, then f* () and

f p,q(-) are not in general equivalent.

(b) If condition S is not satisfied, then neither f*C)

nor f P(-) possess the property that their first

p + q + 1 Fourier coefficients are equal to 00),

OCl),..., * p+q).

Because of fact (b), it is not clear in what sense f P(-) is

p~,q
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approximating f() when condition S is not satisfied. When using

f pCq() for approximation purposes it is thus important to always

verify whether or not this condition is met.

In concluding this section two special cases of f (-)P,q

are noted. When p - 0

f (X - [() + 2Real( Z *(v)e )]

a Fourier series approximator, and when q - 0

k1
P'O 2-ff i -a 1e -_...-a pxi

an autoregressive approximator. The first of these two relationships

follows trivially from the definition of e n(A m). The second follows

from the fact, proven by Pagano (1973), that condition S is always

satisfied whenever q - 0 (assuming ({(v)} is positive definite),

and thus, by Theorem 2.3, f, 0 (.) E f*,0 (). Autoregressive approxi-

mators have an advantage over ARMA approximators in that they always

satisfy condition S, which of course implies that *p0 (v) - O() for

Ivi - 0,1,...,p. However, as will be illustrated in the next and

succeeding sections, there is much to be gained in considering

f p,q() for q > 0.

2.3 Examples Comparing Fourier Series, Autoregressive, and
APMA Approximators

By way of illustration we will now compare the Fourier

series, autoregressive, and ARMA (p > 0 and q > 0) methods of

approximating a function. Since these methods are of interest

to us in the context of density estimation, the examples to follow
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involve, for the most part, functions which are comonly used

as models for probability densities. Although they are cer-

tainly not exhaustive, the examples given serve to illustrate

the value of the ARMA method as an approximation scheme.

Numerous additional examples already exist which show drama-

tically how the e -transform accelerates the rate of conver-n

gence of slowly convergent sequences, and in some cases induces

convergence of divergent sequences (see Gray, Houston, and

Morgan (1978)). Since the sequences [F x)} associated withm

the functions of this section are not what would usually be

considered slowly convergent, the examples which follow are

not as dramatic as those just mentioned, but nonetheless

interesting.

In our first example, we investigate how well the Fourier

series and autoregressive methods fare in approximating a density

for which there exists an error-free ARMA app vximator Con-

sider the function

f~1)(x) - 1f (x) +1f (x) (X a

a mixture of the densities

f1 (x (.4742)11l-.50e ix1211l-(.40;'(T/8: ex12
fl(x - 1 { _(.80ei( r/4) e 12

and

f (x) (.2775)f2x 2v 11 + (.851)e ix,2

A result which will be proven in Chapter III is that the mixture

of densities having ARMA representations itself has an ARMA

representation. With this result it is easily verified that
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f(l)(.) has an ARMA (2,3) representation. By the earlier results

of this chapter, it then follows that the approximator (,).) is((2,3

identical to f (1)(.), or, in other words, f () .) is completely

determined by its first five Fourier coefficients. Of interest,

though, is a determination of how well the Fourier series and

autoregressive approximation schemes perform in this situation.

In Figures 2.1 and 2.2, respectively, the Fourier series

and autoregressive approximators based on 0 ( )... , (1) (5)

have been plotted with f(l)(.). Figure 2.3 shows a plot of f(1)0,i0 t

and f(l)(.), and in Table 2.1a comparison of ISE is given for

the two methods being considered. The ISE for each approximator

has been approximated numerically by Simpson's rule using 201

function evaluations on [-r, ]. (The ISE in all the examples to

follow has been calculated in the same way.) The autoregressive

method is seen to perform considerably better in this instance

than does the Fourier series method. In a visual sense f(l)(.)
6,0

f(l).) .f(l) (.) are virtually indistinguisable from f() (.)
7,0 "  15,0
(and hence a plot of f(l) .) has been omitted). The Fourier

10,0

series approximators, however, have difficulty in resolving the

peaks of f(1)(.) without introducing spurious variation. This

shortcoming is even more important in the stochastic setting

where it is desirable to limit the cause of spurious variation

in a fitted curve to sampling variability. In Chapter VI a

data set is discussed which verifies the practical importance

of densities such as f(l)(.) which have rather sharp peaks.

In our last three examples we compare the three different

approximation schemes on functions which do not have ARMA repre-



23

'04 w-4

0-

C4
C4

tx
ok

V4 '



24

0

4V4
0

hli

cc

c is V4

I.

v-4 In
Go C 0

9I



25

0

r4

. -1

C44

-44

"W4

09

C4 -%

'0 0 % 0



26

TABLE 2.1

ISE COMPARISON FOR FOURIER SERIES AND AUTOREGRESSIVE

APPROXI TORS OF RE FUNCTION f()(.)

k ISE (f(l )  ISE-- Ok kO

5 .04216 .00238

6 .03332 .00055

7 .02574 .00025

8 .01495 .00008

9 .01307 .00003

10 .00865 .00001

11 .00577 .00000

12 .00487 .00000

13 .00299 .00000

14 .00230 .00000

15 .00174 .00000
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sentations. In this way the versatility of the ARMA method is

investigated by examining its performance in situations which

are other than ideal for it. The functions considered are

f 2) W 1224Ex .rf15 1 x+ 2
:e-)x = 2-.1 (. 2 i_r.,T.r]X

f 3>(x) - 2e 4jxjI W,

and

()X+wr5 6
fa4)(x) - 6[---1 exp{-2[(x+w)1 2] I

The function f(2)(.) is simply a Beta (16,3) density which has

been shifted and rescaled so that its support is the interval

[-,]. The second function, f (3)(.), is a truncated double

exponential (or Laplace) density, and f (4)(.) is a Weibull

density (with scale parameter 2 and shape parameter 6) which

has been truncated at w and then shifted and rescaled to have

support [-wi]. Since f(3)(.) and f(4)(.) exclude, respectively,

only .00035% and less than 10"97Z of the area of the original-

densities, the comparisons to follow may be regarded as compari-

sons of the ARMA, Fourier series, and autoregressive density

estimation methods in the absence of stochastic errors.

Pictured in Figures 2.4 - 2.12 are plots of various

approximators along with the functions f( )(.), i - 2,3,4.

Comparisons of ISE are given in Tables 2.2 - 2.4. Both visually

and in terms of ISE, the ARMA approximators display a decided

advantage over the other two approximation schemes. A hallmark

of the ARMA method which surfaces in these three examples is

the ability of ARMA approximators to correctly fit both the

. . ......
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TABLE 2.3

ISE COMPARISON FOR APPROXIMATORS OF THE FUNCTION f(3)

k IS~f () IE~f 3) 1SE(f(3~)

1 .55890 .84191 .84191
2 .35518 .02652 .31226
3 .22480 .00403 .10221
4 .14523 .00602 .08036
5 .09675 .00613 .01784
6 .06662 .00517 .02481
7 .04733 .00410 .00407
8 .03460 .00319 .00969
9 .02595 .00249 .00151
10 .01989 .00196 .00472
11 .01555 .00157 .00095
12 .01237 .00127 .00274
13 .00999 .00105 .00077
14 .00818 .00088 .00180
15 .00678 .00075 .00067
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TABLE 2.4

ISE COMPARISONS FOR APPROXIMATORS OF THE FUNCTION f (4)

k ISE(£ ) SE(fl~_ )4  ISEMfI- 2 ISE(f
kO~k l~k-1 2,k-2 - kO'

1 .44243 1.84975 1.84975

2 .23112 .20863 1.22354 1.22354

3 .10407 .03968 .11457 .92122

4 .04104 .00804 .01615 .87385

5 .01463 .00155 .00228 .68997

6 .00488 .00028 .00030 .66224

7 .00155 .00005 .00003 .28571

8 .00047 .00001 .00000 1.27134

9 .00013 .00000 .00000 .54683

10 .00004 .00000 .00000 .90297
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tails and the peak of a function. In Figures 2.4, 2.7, and 2.10

the Fourier series approximators are seen to correctly (or nearly

correctly) fit the peak of each function only at the expense of

incorrectly fitting the tails. By contrast, the ARMA approxi-

mators of Figures 2.5, 2.8 and 2.11 (based in each case on the

same number of Fourier coefficients as the corresponding Fourier

series approximator) smooth out variation in the tails while

still correctly fitting the peaks.

The autoregressive method performs quite well on the

function f(3)(.) but does very poorly on f(2)(.) and f(4)(.).

This phenomenon can be explained quite simply by examining the

Fourier series representation of the approximator fk(.). Byk,O

property (2.4) we have

If(x)-fk (x)I - f ~ II  . l2---- I E (O(v)_¢V o(v))ei
Ivl>k

and

1 CO (v - (v)12ISE(fk,o) = z l(v)- 12
Tv-k+1 l 

v

The approximator f, 0 ( -) obviously, then, performs poorly if it

does a poor job of extrapolating the Fourier coefficients O(k+l),

0(k+2),.... This is clearly what has occurred in the examples

involving f(2 )(.) and f(4)(.). Our examples seem to indicate

that, in general, fixing the autoregressive order and allowing

the moving average order to increase is the best scheme for

reducing the error inherent in Fourier series approximators.
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Having examined the advantages of using the ARKA (as

opposed to Fourier series or autoregressive) approximation

method the remainder of this work is devoted to an investi-

gation of the ARM method in the stochastic setting of prob-

ability density estimation.
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CHAPTER III

SMALL SAMPLE PROPERTIES OF AFMA DENSITY ESTIMATORS

3.1 Introduction

We now formally begin our study of probability density

estimation via ARMA representations. In the current chapter

we introduce the estimation problem and define an ARMA estimator

f plq(). Alternative ways of expressing f p,q() are derived

which serve to motivate ARMA estimators and show explicitly

their relationship to Fourier series estimators. The main result

of this chapter, however, will be establishing the relationship

between fp(.) and the generalized jackknife statistic. It will
p, q

be shown that ARMA estimators employ an adaptive, higher order

generalized jackknife scheme.

Chapter III is concluded with a result concerning the mixture

of densities having ARMA representations. The mixture of auto-

regressive densities is seen, in general, to be an ARMA density.

This result conveys the necessity of ARMA representations to a

theory based on the representation of densities by autoregressive

schemes.

3.2 Definition of the Estimation Problem and (-)

Suppose Y is a random variable with continuous probability

density function g(.) and that a random sample Yl ...Yn is obtained

from g('). In the remainder of this work we shall be concerned with
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the problem of estimating the function g(.).

All theoretical results will be based upon the assumption

that Y has the finite support (a,b]. To be consistent with pre-

vious notation, we shall in this situation consider estimating the

density f(-) of the random variable

X = -(b+a)]

which has support [-n,]. As before it is also assumed that f(-)

has the Fourier series representation

f(x) - 21 7 (v)eivX , a.e. [-ww]

2W

Tapia and Thompson (1978) note that the finite support

assumption is only a small liability in practice since, in the

absence of any prior information about g(.), it would be unrea-

sonable to estimate the density outside the range of the data.

If the support of Y is indeed infinite, or unknown, then a and

b may be replaced, for a given data set, by y(O) and Y(n+l),

where

(i) Y(O) and y(,+) are "natural" minimum and maximum

values for the random variable Y, or

(ii) Y(O) - Y(1 ) and Y(n+l) " Y(n) (Y(j) denotes the

ith order statistic of the random sample Y1.."Yn).

The density g(-) is then estimated over the interval [y(O),y(n+l)]

by first estimating an associated f(.) over the interval (-ww]

using the transformed sample

zi - W) (2yi - (Y(U+)+ y(o))] (i

I~*~_____________
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Under the finite support assumption f(.) is characterized

by the Fourier coefficients

*(v) - I e-ivxdF(x), v - 1,2,...,
-W

where F(-) is the cumulative distribution function (cdf) of X.

Given a random sample 7,...,X n from f(.) we shall estimate O(v)

by forming an appropriate functional of the empirical cdf F n(.),

i.e.

;(v) - fe-ivxdF (x)
-I.

1 n eiVX- - E e j, v " 1,2,.
n J-1

The empirical characteristic function O(v) is obviously unbiased

for O(v) and also possesses the following easily established

properties (see Tarter and Kronmal (1970)):

var(;(v))- -(l- I(v)12)
*ov , ;(v2 ) - E(;(v 2 )) -(Nl)*(T (3.1)

1 o[WV-V )-(V -v )], v v 2

1 v 2 1 ~ 2

For the situation where the support of the original random

variable Y is infinite or unknown we have

1 n eivX
*(v) - -e j

1n 

1 - exp{( )-iVYo) [2Yj-(Y n+)+Y(O))] M
n j= ( (n+) (0)(



46

In this case *()is unbiased for the parameter

ON) E-ivx

- f e-v f(x) dx,
-iT

vhere f(-) is the density of the random variable

X2 -C Y +y )](
(n1 -Y (O)~ 1 nl 0

The density being estimated on [-ir,irl by the methods to be dis-

cussed below is thus

27r

(where it is assumed that this Fourier series converges). We

note that if Y 0)and Y (l are nonstochastic the properties in

(3.1) hold if O(v) is replaced by **(v).

We are now ready to define the ARMA estimator f C)of
pjq

f(-), where it is understood that f(C) arises in one of the two

ways described above.

Definition 3.1 Let (;(k), ;(k+l),....} be a sequence of estimated

Fourier coefficients. Then the ARMA estimator f pq(-) of f(-) is

f Wz ( + 2Real(e (F Wx) FOCx))] x C £ VTPA 2r p q0

where

q+1- . q + 1-p 0
k 

q
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and

ivX

F (x)0 
J<k

It is seen that f (-) is simply the stochastic analog of theP,q

approximator f C.). Just as in the deterministic setting wep,q

have the two special cases

S1 q X
f,q (x) - -[l + 2Real( Z (v)e

vil

and
k 1

fp, 0 (x) - * lx ipxi2
2 i le-ae- .1 -e e

a Fourier series and autoregressive estimator respectively.

3.3 The Generalized Jackknife Property of f ()
pjq

Schucany, Gray and Owen (1971) introduced a generalized

notion of the jackknife statistic which greatly enhances the

effectiveness of the Jackknife as a bias reduction tool. Their

work exploits the specific form of the bias expansion of an estima-

tor and gives the proper notion for reapplication of the Jackknife.

Following Gray and Schucany (1972) the generalized Jackknife

may be defined as follows.

Definition 3.2 Let e "2 ' k+1 be k + 1 estimatc,,;, for 8

based on the random sample X,...,Xn . Further, let aij, i-l,...,k

and j 1,...,k+l, be real numbers satisfying

!I
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1 1 ... 1

a11  a 12." al,k+l

#0 (3.2)

k1 'k2 '" k,k+1

Then the generalized jackknife G(8I, 2,...,k+I) is defined by

l1 a12-- al,k+1

G( l 2, .-,klz ,.2 ... ak%"' ,k+l
G 9... .

29 +3.

a 1  a12"' "al,k+

k1 ak2".. a,k+I

A simple form for the bias of the generalized jackknife is obtained

in the following theorem.

Theorem 3.1 If

E(8 ) - Z h Cn)b (e), j - 1.2,.. .,k+1

and (5.2) is satisfied with a ij - hij(n), then

EJG(89, -..., k+) a + B G(,,e),
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where

1 2 ... Bk+l

h11 (n) h12 (n) ... h l,k+l(n)

bk.±"n) hk2(n) ... h,k 1 (n)
BG(n, 8)

1 1 ... I

h1 1 (n) h1 2 (n) ... h l,k+l (n)

hk.l(n hk2(n) .hkk+l(n)

and

Bj hi(n)be) J - 1,2 ,k+.j ik+l '"""

Proof: See Gray and Schucany (1972).

An immediate corollary to Theorem 3.1is rrLt G(%le 2,..., ek+l)

is unbiased for 8 if
k

E(e%) e + E hi (n)b (8), j - 1,2,...,k+i.

In order to see the sense in which f (.) is related to

the generalized jackknife recall that

fp,qW [1 + 2 Real{e (F (x)) - Fo Cx)]

where



50

Fq-p(x) Fq.p.i(x) ... Fq x)

;(q-p+l)ei(q-p+ l )x  i(~p2)tq-p,+2)x .. (~~ i (q+ l )x

;(q-p+2)e... (q+1)e

iqx i(q+1)x i(q+p)xO(q)et  (q+l)e ... O(q+p)e

e (F (x)/) -

i(q-p+l)x i(q-p+2)x l(q+1)x
O(q-p+l)e o(q.-p+2)e .. (q+l)e

iqx (q+l)e ii(q+p)x

A AAtow, if G(F q(X), ,...,(x)) is the statistic obtained by

replacing *(j) in the above determinants by fixed, known quantities,

then G is a generalized jackknife statistic. More importantly, we

note that e p(F q(x)) and each of F j(x), J - q-p,...,q, are estimators

of
O (v) e i v y

v-k

(where it is assumed that the support of Y is finite and known),

and that F1 (x) has the bias expansion

E[14 (x)] - ! *(v)e ivX - ? O(v)eiv" . -Z ,(v+j)ei(V+J)x.
v-k v-J+1 v-1

In the notation of Theorem 3.1, and allowing h m(n) to depend on

unknown parameters, we then have

4(h+J+q-p-)e i (m + j+ q -p -l )x . hmi (n),

j - 1,..., p + 1, m- 1,2,... and bm(a) -1.
/-m
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The pth order e -transform of F (x), ep (F (X)), is thus seen to

be an adaptive, generalized jackknife statistic in the sense

that it employs estimates of the unknown terms h m(n) in the

bias expansion of F q-pl+j(x). In other words, e p(F q(x)) has

the same form as a generalized jackknife, but adapts itself to

a particular data set by estimating the unknown quantities hMi (n).

Of interest now is an expression for the bias of e p(F q(x)).

We have

Bias[e p(F q(X))] - E[ep (F q(x))] - (v)e

in[. (Ftq Cx)) - !* v)e 1 vx].
v-k

An easily proven property of the e -transform isU

e (A + c) - a (A ) + c
n m a BI

and thus

Bias[ep (F q(x))] Eep (F q(x) - ! *(v)eAVX)] (3.3)

Because of the fact that e (F x)) is nonlinear in F qp(X),...,

Fq (x), expression (3.3) cannot be simplified further. The explic'r

form obtained in Theorem 3.1 for the bias of G9e,e 2,..., 1l) is a

consequence of G being linear in elI 2 ,...,e It is informative

to note, however, that if G*(Fqp (x),...,F qX)) is the random

variable obtained by replacing ;(Q) by *(J) in the definition of

ep (Fq x)), we have (by Theorem 3.1)

E[G*(iq~px),...,Fq(x))]- ! *(v)e - e p(F q(x) - -E (v)e ) -

- _p,-q vk ' q v-k
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- ! (v)ei r - * (v)e i w  ... - ! (v)e 1v z

v-q-p+l v-q-p+2 v-q+l

(q) i ( q- p+ l ) x  (q+)ei(q-P + 2 ) x  i(q + l ) x

1 1 ... 1

$(q-p+l)ei~-~ ~ (q-p+2)ei~- + )  ... O(q+l)e i ~~~

(q)e iqx  (q+l)e t ( q+ l ) x  ... ,(q+p)ei(q+p)x

Therefore e p(Fq (x)) may be regarded as estimating a random variable

G* whose bias has the same form as that of a generalized jackknife.

As has been pointed out previously, the RMA method is

especially effective in approximating functions whose Fourier

coefficients are well approximated by the solution of a linear,

homogeneous, difference equation with constant coefficients. Of

interest, then, is the bias of e p(F q(x)) under the assumption that

the density f(.) has an AMA(p,q) representation. Under this assump-

tion we have, by Theorem 2.2 ,

? *(v)e ivx - e (F x))

v-k p q

Thus, we have immediately that

Biase p(F q(x))] - E[e p(Fq (x)) - e p(F q(X))]
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It is still possible, however, to gain some additional insight

into e p(F 6 x)) by showing precisely how it is related to the

jackknife under the ARMA assumption. To illustrate this rela-

tionship, we note that, again by Theorem 2.2,

MJ+P
Bias[ (x)] -- *(v)eivi- -e ( (v)e ),

v-j+l P v-J+1

j q-p...q. An alternative form for expressing the e -trans-

form is

e (A) - n - m- -n+l m-n+l mm
eM-n + cm-n+l + ... + cm

which is obtained by expanding the determinants in the definition

of e n(A ) by cofactors of the first row. Using this form of e

we have (to be proven in Section 3.4)

i+i
e( ¢ (v)e • v )

epvij+l
J4p iv i xp- ivx i (P-l)x.( li(i+l)x

E ((v)e • 1(vZe -. - e(+)
-v-J+l v-j+"

aeixae x1-n
1 p

where the a are as in Theorem 2.1. F (x) obviously, then, has a

finite bias expansion, and using the notation of Theorem 3.1 we

take a

- M )
ix-. .peiPX , M - 1,...,p-1

bin (e) - -1

1 eix...- apx M p

q-p+j4%-l .
and h (n) = E *(v)e , m-l,...,p and j -,...,p+j.

vq-p+j
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By Theorem 3.1 it follows that

EEG**(F qp(x) ....F i(x))] Z E (v)e ivx
q-p qv-k

where

G**(F -(x) ....F I(x))

F- (X) ; q-p.~.(x) ... F q(x)

q-p+2 i q-p+3 i q+2 x

vinq-p+l v-q-p+2 vu-q+l

q i q+1 v ~ v
E 0(v)e ~ r O(v)e ... Z 0(v)e
v-q-p+l v-q-p+2 v-q+l

1

1~-~~ i1-~~ ~-+) ~-+) ... 1~~~ ~~~

q-pI2 i q-p+3 iv q+2 v
E O(v)e1 ' E O(ve r O(v) e
V-q-p+l v-q-p+2 v-q+l

q ixqi :Lvx E~ (vx
E 0(v)e! ~ E O(v)eZ (e
v-q-p+l v-q-p+2 v-q+l
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Let A , (x+l)(W be the matrix obtained by subtracting the (p-j)th

row of Ai,j (x) from the (p+l-j)th row of A iCjx), i - 1,2 and

J - 0,1,...,p- 2. Then

- G*(F qp(x),...,F (x)) ;

but, by a basic property of determinants, we also have

A2, (-1) Cx)j jA250(x)l

and therefore

L,*(F C x)...,F qCx)) -G**CF qp(x),...,F (x)).

As noted previously, e (F X)) estimates the random variable G*.
p q

Therefore, under the assumption that f(.) has an ARMA (p,q) repre-

sentation, e p(F qx)) is seen to estimate a random variable G**

which is constructed by the generalized jackknife scheme in such

a way that

E(G**] - eiv

v-k

Although it is not possible to obtain a simple expression

for the bias of e p(F q(x)), the following observations are possible.

Suppose f(-) has an ARM (p,q) representation. Then the bias of

e (; x)) is a result of the error inherent in the estimation of

#(v), IvI - 1,2...,p+q. This source of bias may essentially be

removed by taking a large enough sample size n. By contrast, the

bias of F (x), a logical competitor of e p(Fq(x)), is - (v)e
v-J+l
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regardless of the sample size. These observations urovide a motiva-

tion for considering AKKA estimators as a possible alternative

to Fourier series estimators.

To this point we have considered only the bias of e p(F q(x)).

In concluding this section we note that the bias of f pq(x) depends

only upon Bias(e p(Fq (x))]. We have

Bias(fpq (x)] - E[f pq(x)] - f(x)

M 2i[1+2Real{E(e p (Fq(x)))- E(F0 (x))}]

- [l+2Real( (v)e iv X - F (x))]
v-k 0

Real {E(ep(Fq(x)))- Fo(x)}

Real { (v)evx - Fo(x)}
v-k

1 AE i(v(x
1 Real (E(e ( (x))) - ! (v)e iv x
7; p q v-k

1
RealBias(e p(F q(x))]I

3.4 Alternative Ways of Expressing fp()

In this section some different ways of expressing f pq(.)

are derived which will be useful in later chapters and also show

explicitly how ARMA estimators are related to Fourier series

estimators. The basic result involves using the alternative form

of expressing e n(A m ) referred to in the previous section. This

result is stated in the following theorem.
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Theorem 3.2

ppx

where (a13ei29 ... vcl ) is the solution of the system of equations

*(q) *(q-1) .. (q-p+1) *(q+l)

;(qI-) O(q) ... O(q-p+2) Y - O(q+2) * (3.4)

Proof:

c g ()qpx) -~ (X)pnFb'(x)+ ..+c T(-k) F (X)
p (qx) c _(W)+Q (X + .. + c Wxq-p q-p+i(X q

where the c q..j(x) are cofactors of the first row in either the

numerator or denominator determinant of e (q (x)). By performing

approriate row and column operations within these cofactors it

is easily verified that

a*3F4W -a1e1t (71 (x))..- e Ol ( )i.pixF CP (3.5)
p o 1aix apeipx

where

;(q) *(-) ... *Cq-J+2) *(q+l) *^(q-j) ... *(q-p+l)

a * (q+l) *(q) ... *(q-J+3) O(q+2) O(q-j+l) ... *(q-p+2)

*(q+p-l) *(q+p-2) ... *(q+P-J+l) *(q+P) *(q+P-J-l) ... 4q
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j- 1,2,...,p and

;(q) 4(q-1) O. (q-p+1)

o (qlI) ;(q) ... ;(q-p+2)

*(q+p-1) *(q+p-2) ... O(q)

al a2 a
It follows that ( -2 ) is the Cramer's rule solution

aO a 0 a0
to the system in (3.4). By dividing numerator and denominator of

(3.5) by a0 the result follows.

By the previous theorem f (x) may be expressed asexrese as

p~p
F' Wx-a i q-1 (x)-...-; pe Piq77p (x)

f ppq(x) " 1 + MReal ( q -F0^. (x))].

The results of Chapter 11,show that, if al,'"'ap satisfy

condition S, f p,(.) satisfies

pqq (v) - 0(v) , vi -0

where

op,q¢.v . e, f p ,q W

Using this fact and the result of Theorem 3.2, it is informative

to re-express f p(X) as

aX 1-A p+qa iv 4q ivx)

f x -~ T [1+2Real{e (F 6(x))-FO (x)+ Z *(v)e E $ (v)e 1
p q 2u p- v-i

- f (v)e + +;Real(ep (Fqx)) - Fp-x)
v-p-q p
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" o p +q iV x ivx ipx(+xi

E VeL _' ei P' )ex p av Eix.. fve iXT (ve i

1 eal v-q+1 Vi. Vv-Sp+1

ix ipxI
( -e - L .. g)- e

f O,pq(x p,q

Expression (3.6) shows f (-) to be the sum of a Fourier seriesP'q I

estimator fOp+q (-) and a function gpvq( which, under condition

S, has the Fourier series expansion

2w vE>p+q Pq Me

where the p,q (v) are extrapolated from 4(v), IvI  0,1...,p+q,

using the difference equation y(v) - aly(v-l)-...-py (v-p) - 0."

We note, though, that (3.6) is valid regardless of whether or not

condition S holds, although gp,q (.) does not have the same inter-

pretation in this case. The validity of (3.6) will be useful in

Chapter V when we consider estimating the MISE of f (-).P,q

A simple example which illustrates the consequences of 0.6)

will be helpful at this point. Consider the ARMA estimator fl,q(.).

By (3.6), we have

f1 ,q(Z - ,qq.1(x a 1 ]
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*(q)

A 1 ^v ivX
If 'cl 1, x Cte and thus

1-ar1 e W

- av-q-2 ivX

v'mq+2

Therefore,

f (X) f (x) + W qVei
l~q O'q+l n 1:,~ ~

where

A, q(V) (a cI (q+1] a-1- v - q+2, q+3,.... . (3.7)

Obviously liq (V) a- 0, (v-1) 0 for v > q + 2, but we also

have'(by (3.7))

;1,q(q+
2) a ~1;(q+l) 1,q (q+2) I O1 (q+l) - 0

This shows exliity how the iq (v), v - q+29 q+3,.... are extra-

polated from ;(q) and *(q+l) by using y(v) - rzly(v-1) - 0.

Suppose now that in the above case condition S is not

satisfied, I.e. suppose 1011 > 1. We then have

:L 1-1 -1,
1 (1

.- a~-~

v 0 4r 
la
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q+l -qq1ivX

V-1
v-n

This implies that

1e [;;'+1e ] e l v-q-1 ivx

+ ; -O<q~l)a 1-v-q-1eiVx I
v-1

Using this expression and (3.6) it follows that

fl,q(X) - 2F''[i,q(O) + 2 Real( r O1 q(V))]

where

01,q(0) - 1- 2Realf1cq~l)a-1

and (3.8)

lq(V) =

1-_ (q+l)C v-q-1 ,v - q+2, q+3,....

It is easily verified that ;1,q(V) - a 1 l ~q(V-l) - 0 for v > q.

However, by (3.8), f l,q(.) does not integrate to 1 and does not

satisfy

41,q(v) - #(v), Ivl - 1,...,q + 1.

Therefore, fiq(,) is not as easily interpreted in this case as it

is when condition S is satisfied. It should be pointed out, though,

that the efficacy of fp(.) as an estimate of f(-) may be assessed

p•q

LI.
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regardless of whether or not condition S is satisfied, as will be

shown in Chapter V.

3.5 The Mixture of Densities Raving KRMA Representations

As pointed out in Chapter I, Carmichael approaches the

density estimation problem by using autoregressive schemes to

represent the density f(-). Under fairly mild smoothness condi-

tions on f(') Carmichael shows that

lim fpo(x) - f(x), uniformly in x, (3.9)

which implies the existence of a po (for r arbitrarily small) such that

If(x) - fp0,0(X)l < e, a.e. t-t,,r. This result provides a justi-

fication for using autoregressive representations in the estimation

of probability densities. However, it also leads indirectly to a

justification for considering ARMA representations. In order to

show why this is so we state and prove the following theorem.

Theorem 3.3 Let f pj~q(O) (j - 1,2) be a probability density

function (defined on [-n, ) having the ARMA (pjtq ) representation

vJB.v•ivr

I l-a jleix." _ajpjeipJX1 2

and let 0 < y < 1.

Then the mixture density yf plql(.) + (l-)fp2,(q2)

has an ARMA(p 1 + P29 k) representation, where k < wax(q1 + 2,q 2+Pl).

- - I:'A
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Proof: Let 11-MjleiX ... a jp eipix12  a (x). j - 1,2.

II

Then,

ql 2 ivx

(17 S 2 e
v-ql2

yfplqlx) + (1-y)fp2 (x) -vql

a (x)

q 2 iv

(l-Y) 20 ive

v--q 2
a2(x)

7~a 2(x) qE 8lei +(1_y)al(x) q2 BveiVX

i~i al(x)a2 Cx)

The denominator is obviously of the form

-aleiX a ... epl+p2i(Pl+P2)x1
2

Pbj ivx
in addition, since aj(x) may be expressed as E b e ,the numerator

k v-pjjv
is of the form Z B eivx where k does not exceed max(q+p 2 ,q2 +pl ) .

v-k v

The result thus follows.

By induction a similar result follows for the mixture of

m ARMA densities (m > 3).

A special case of Theorem 3.3 which is of interest is the

mixture of autoregressive densities. The mixture of f and

fP2,0 ( - ) is, by Theorem 3.3, an ARMA (Pl + P2,k) density where

k _ max (plP 2 ) and, in general, k > 0. Carmichael's result, (3.9),

and Theorem 3.3 are thus seen to provide a strong motivation for
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ARHA representations in situations where f(-) arises as the

mixture of densities. Of course (3.9) shows that even the

mixture of densities may be well approximated by an auto-

regressive scheme. However, the AMA (p1+p,1k) representation

will necessarily be more parsimonious than a satisfactory auto-

regressive representation. This is important in the stochastic

setting where fitting too many parameters is to be avoided.
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CHAPTER IV

LARGE SAMPLE PROPERTIES OF ARMA DENSITY ESTIMATORS

4.1 Introduction

We continue our study of ARMA density estimators by

establishing some of their large sample properties. In Theorem

4.1 conditions are stated under which f (.) converges in prob-P ,q

ability to f(.), where p remains fixed and q tends to infinity

at a specified rate with the sample size n. The results of

Section 4.3 are the stochastic analogs of some of the work of

McWilliams (1969) involving the en-transform. Sufficient condi-

tions, which are more informative than those in Theorem 4.1, are

established for the convergence in probability of fl,q(-) to f(o)

(as q and n tend to infinity). More importantly, flq(-) is

shown to possess a certain optimality property for densities

satisfying

lim _t - R.
v." *(v)

Finally, we point out that higher order (p > 2) results paralleling

those for fl,q () are undoubtedly obtainable.

4.2 Conditions for the Consistency of f pq(.)

A minimal requirement of any density estimator is its conver-

gency (in some sense) to the true density function as the sample

size tends to infinity. Considerable attention in the literature

has been focused upon establishing some form of consistency for
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various types of density estimators. The mean square error con-

sistency of Fourier series estimators has already been indicated

in Chapter I. Parzen (1962) has proven that for suitably chosen

weighting functions K(.), the kernel density estimator

1 n /x-X\
(X) is - E K

n( XK

is mean square error consistent for f(x) if h - h(n) satisfies lim h(n)=O and

lim nh(n) - i. Other estimators and different convergence criteria
nU-N
have also been considered (see Tapia and Thompson (1978)).

In the following theorem conditions are stated under which

fp q(-) converges in probability to f(-).

Theorem 4.1 Suppose f(-) is a density defined on [-w,ffl which

is continuous and of bounded variation on that interval. Based

on the random sample Xl...,Xn from f(.), let CPjq) J-l,2,...,p)

be the solution of the system of equations in (3.4). For a fixed

p > 1 and q(n) - o (/'E) (where lim q(n) - -), suppose

.(P'q)'P+q A(V

p-im '71 v=+a-1+1 0, J-l,...,p, (4.1)

P,q

where z (Pq) .- ')elpxl. Thenwhr pq x¢_r:t •-. p

p-n fp q(x) - f(x) for all x E [-ir,i]
p-Oq

Proof: Using the relationship established in Chapter III we have

(assuming the existence of each limit)

p-lim fpq (x) p-lim f O,p+q(x) + p-lim gpq (X)
U-0. WON_ O
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Since f(.) is continuous and of bounded variation on [-wi] f(x)

has a Fourier series representation, and thus

Bia.- Cf 0,P(x) .-l *(v)ei (4.2)
2w1 1 >p+q

which tends to zero as q - m. We have also

1 p+qA ivxvar[f (x ] -7 va[Real( E *(v)e )]
v-1

p+q. ivx 1 q
+ E (1 (v e I - -2 el (v - k )

2! v1 =

1 p+q 2
+ 2 E E c (0(v)_()(k)(-~

w v-1 kv

1 12 n+ ,l)p+q -!2

2 n n

If p is fixed and q - o(/n') it thus follows that

lim var[f o,p+q(x)] - o. (4.3)

By (4.2) and (4.3) we have (for q - o(/ln) and unbounded)

limE[f, (x) - f(x)] 2  0,o q p4-qn-mOfI

and thus

p-him f0o q(x) = f(x).

We must now show p-lim gpCx) - 0 in order to prove the theorem.

p!

-:- ,.. k._ . '_ • " • -'., I
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Recall that

1_ ,p .(p,q)
g (x) --Realt E () W ,
p,q W ja

where

(p^(p,q) eijx P q e PX

_;pa ._^( pq)eiPx
1 

p

Since

1^(P,q)l P+q (l

z
pq

bounds js(P'q)(x), it follows (from condition (4.1)) that

p-llm B P(q)_x. - 0. Therefore, p-lim £ 0 P'q)x.( ) - 0 and
M n fn-.JIj

consequently p-limn gpq () 0. Since x was chosen arbitrarily

the result follows.

Several comments are in order regarding Theorem 4.1. First,

it should be pointed out that, since the method of estimating O(v)

is fixed, condition (4.1) is implicitly a condition on the Fourier

coefficients of f('). In this work, however, the problem of trans-

lating (4.1) into explicit conditions on the sequence {O(v)} has

not been solved. It is hoped that a satisfactory solution to this

problem may be obtained after future research. For the present,

though, we note that the importance of Theorem 4.1 lies in the

fact that it points out where the difficulty rests in inducing
convergence from fp q(-). Since o ~p+q W)is consistent for

f(x), it is clear that conditions need only be established to

insure that p-lha g (qW 0.
Sp,q~x

- -I
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Although we will not be able to substitute conditions for

(4.1) which are as explicit as desired, the following observations

make ( 4 .1)more palatable. We have

p+q p+q
E 1¢(v)l - E I;(v) - (v) + O

v"pq-J+l vip+q-J+l

p+q p+q
E J1¢v)-Ov)l + E Io(v~l

v-p+q-j+l v-p+q-j+l

which converges in probability to zero (as n - ) by an argument

similar to that in Theorem 4.1. In addition, it is easily verified

that
p+q

E i*(v)-O(v)I - 01)
v-.p+q-J+l

and thus a set of conditions which may replace condition (4.1) is:

1,(p q)
M1 = (ni)-o ('i) , Ci - z2..p

p,q

p+qI
(ii) E I,¢V)l -- (i

viq+l

Although it is still not precisely clear for which densities (i)

and (ii) are valid, this set of conditions is somewhat more informa-

tive than condition (4.1).

It is important to note at this point that one member of the

ARMA class, f0,q(-) is mean square error consistent for f(-) under

the single condition that f(.) have a Fourier series representation

for all x [-ww]. This fact was proven in Theorem 4.1. Because

of the consistency of fO,q(9) Theorem 4.1 would not be extremely
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important unless it could be shown that f pA) (for p > 1) in

some sense converges more rapidly to f(-) than does f ,q(-).

Establishing conditions which insure the more rapid convergence

of f PI(.) proves to be quite difficult in general. However,

in the next section we consider the special case of f1 q () and

obtain some quite satisfying results.

4.3 Large Sample Results Invoiving l~ q

Given a complex-valued sequence of partial sums {Ak A A+l ... I

which converges to A,, McWilliams (1969) has established conditions

under which the following results hold:

A; - e (A)m
lim en() A. (n-l,2), lim - l )= A. -A+,

and A. - e2 (Amf+ 2)
1ha 0 (for any J).

A;. A .j

The theorems in the present section involve e1 (Fq x)) and are

the stochastic analogs of the above results involving e1 (Am).

Essentially the same results are obtained with lim replaced by

p-lim.
A -e (A )

A sufficient condition for lim 1 - 0 ism. A .-Aml

a
l am m R, 0 < IRi < 1 (4.4)

where am - A - A .  ecallng Theorem 2.2 it is seen that,

if

a
IL9 - R for m > m0 ,

Wa1
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then
=- e (A)

A hb - 0 for m > m ,

A. A *

Condition (4.4) is thus seen to be a relaxing of the condition

needed for e1(Am ) to be exact, with the result being that e1(A M)

converges more rapidly than Am+.

In the setting of interest here we have am - (m)eimx

a *(M) ix
and a_ ____ e . In this case, then, a condition equi-

aM_ 1  *(m-l)

valent to (4.4) is

4l m) =R •0 < l < 1 (4.5)mrm (iM-l)

If (4.5) holds we have

F.(x) - e1 (FV(x)) 0

, -, F(x) - F+ 1 (x)iv
where F(x) - E *(v)e ivx . This property suggests that, under

v-1
(4.5), e(F m(x)) might converge more rapidly in some stochastic

sense than does F (x). This possibility will be investigated
Fm+1

later, but first it is necessary to verify that elF(X)) does

indeed converge to F=(x) under a condition similar to (4.5).

The verification of this fact Is the subject of the next theorem.

Theorem 4.2 Suppose f(-) is a probability density function

defined on [-r,w] and that f(.) has a Fourier series representa-

tion for all x in that interval. Further, suppose that (4.5) holds
R 
q

and that - 0(1) (as n i). If fl,q(°) is based on a

on a.



72

random sample XI,...,Xn from f(-), and q - o(tA n) (with q

unbounded), then

p-1rn fl q(x) - f(x) for all x [-w,v].

Proof: Since f (x) - (1 + 2Real(e(FN I))),
l,q 2wr 1 lq

f(x) - -[l + 2Real(F(x))],2w

and

p-lim Real (Zn ) Real[p-lim Zn

it is sufficient to show that

p-rn e (F W) F (x).
n~ q()

Observe that

a 1(F q(X)) -F()q (~ eiF~ix ) (ax W1 - (~ i W a ; q  (q)

ixx;(q)el q x  
e FQ-1(x)[1-a(q), I

- ix
1 - C&(q)e

;(q) eiqx
q- 1 (x) +

q-l 1-; *i
(q)e

Since q - o(tn n) it follows from the proof of Theorem 4.1 that

p.-ul Pq-(X) - F.(x). Thus, if

P- a x

2+- 1-a (q),

the result is proven. We have

La -
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p-li. 0(q) - i 0(q) + p-li.(0(q) # (q))

- p-lim (;(q) - 0(q)).

Since E([(q) - *(q)] 0 for each q, and var[0(q) - O(q)] -

.n(1-1#(q) 12) "0 as a _ m i follows that p-lILm(O(q) - #(q)) . 0

and consequently p-lim ;(q) - 0. As 1#(q)elqXl a 1;(q)l, we
also have

p-limlo(q)e±qX 1 = 0. (4.6)

Now consider +1

p-Usa a(q)"p-li. (Q
-1M 1+ (O(q) - 4(q))

By the above ;(q+J) - *(q+J) 0 0 (. .-) (J 0,1) and thus if1 1 P - t
lii- 0 we have p-lmct () R. Now,

ii lim R 1

By hypothesis I (q), is bounded, and so it is sufficient to show

um I r ii-o (r - IRI).

Now, & (r U)qtnr+It - n r 1 sn- ic2 z 2 -nas- sic
q - o(Ltn n). Since tn(rqrn) - we have rqY -* m, and thus

lim q- - 0. As stated above this implies that p-lim C1 R
n-"M rq) nv -(q)

A ix ixand consequently p-lim 1-ca ( 1-Re 00. Along with (4.6), it
n(q)

then follows that
A i ) qx

e lx - 0, and the proof is complete.

Th (q)
The assumption that q tends to * at a rate slower than

~hh~6 ju. - * -.-
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A

en n is undoubtedly more severe than is needed to induce fl,q(-)

to converge. From the above proof it is clear that if

ixp-urn (1-a (q)e -Z(x)
n f

where Z(x) satisfies P[Z(x)#0]-l, then the result of Theorem 4.2

follows. However, the assumption that q-o(tn n) proves to be

advantageous since this assumption will be necessary in order to

prove subsequent more rapid convergence results.

In the next theorem we establish a more rapid convergence

property of e1(Fq(X)). This result and its proof closely parallel

the result and proof of McWilliams in the deterministic setting.

Theorem 4.3 Under the conditions of Theorem 4.2 we have

F(x) - e1(Fq(x)) = 0.
p-Urn .0

rrol- F(x)-F q+l(x)

Proof: Clearly *eA

F Fq (x)-z (q) e .4~x
F.(x) - e1 (F (x)) F(Z) - I-&(q)eiX

f (X) - q+u (X) F.(x) - iqqll)

F(x) q+l(x)
q+l ( q+ 2)x

F,(x)-F +l(x) - 1 - a(,)eix

P.(x) -q+l(x)

A A li(q+2)x

i Q(q) •ilx

F=(x) q+l(x)

eI

as q+3
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Therefore,

F.(X) - e1(Fq(x))p-lim

n-p F(x) - Fq+l(x)

R Q al+l O (q+2) ei q2

1-Re n+ P (x) - Fq+l(x)

q+2)
- -1 p-lim € (q+2)

1-Rei n- [O(q+2)e + [F (x)-F _(x)+ ¢(v)eq- -. q' l v,,q+2

Using arguments similar to that in Theorem 4.2, it is easily verified

that

p-lir (q+2) 1 and P-1rn - [F (X) - -o.
n-, *(q+2) n-)' *(q) t q+l q~

In addition, McWilliams has shown that

limr [(q+2)e -  (v)eVC - 1
WO v-q+2 l-Reim

under the assumption that lim (m) - R. It therefore4(M-1)

follows that

p-l- ) - eR(F(x)) - 1-Rei

F (x) - F .l(X) 1-Re i

- 0.

Two points should be made about the result in Theorem 4.3.

First, the theorem should be regarded as an optimality property

of fl~q(.) but not as proof that fl,q(.) converges more rapidly

to f(.) than f,q+l .). In order to prove this result it is

*I .ll I'1
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necessary to show

Real(F,(x) - e CFg(x)))
p-i:un. W 0
To Real(F.(x) - Fq+l(x))

which of course is not an immediate consequence of Theorem 4.3.

However, since f(x) is completely determined by F.(x), an estimator

of F,(x) which has good properties is of considerable importance.

The second point to be made regarding Theorem 4.3 involves the

rate at which q . in order to insure the convergence of flq(-)

it was seen in Theorem 4.2 that we must have q - o(Zn n). However,

restricting q in this way in a comparison of e1(Fq(x)) and F q+l(x)

is, in a sense, unfair, since F (x) is consistent for F(x) even
m

when m - o(n). Ideally, a comparison of the rate of convergence

of eI (F qx) and F (x) should be made with q - o(tn n) and m - o(rn).

By modifying the conditions of Theorem 4.3 it is possible to show

that
% x) - e1 (F (x))

p-ur0
F(x) - F,(x)

where q - o(tn n) and m - o(vn). This fact will be proven in

Theorem 4.4.

Before moving to Theorem 4.5 we shall examine the effect

which an assumption like (4.5) has on var[mW(x)]. This is impor-

tant, as the rate at which F (x) converges to F,(x) is directly

affected by var[F M(x)]. Now, since cannot converge to Rm *(m-l)

any faster than in the case where

O(M) R for m > m0  (4.7)* (r-i)
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we wili assume (4.7) and then calculate var[F (x)]. Under C4.7)

we have

f(m) - RW(m-l) - 0 for m > m0,

which implies that O(m0+k) w O(m 0 )Rk, k - 1,2,..... Using the

formula for var(Fm(x)Jobtained in Theorem 4.1, we have

m 11v12) 17,1I m i(v-k)x
var[F(x)] - -I E ((v-k)-O(v)0C-k))e

-nk-l v-k+l

EZ (O(v-k)-(v) (-k))e -
n v-1 k-v+l

The first term in this expression is O(M) regardless of what

n

assumption is made about 0(v), and thus only the convariance

terms need to be considered in investigating the rate of con-

vergence of var(i Cx)]. The second covariance term is simply

the complex conjugate of the first, and so we consider only the

first term. Under assumption (4.7) this term is (for m > m0 + 1)

M-1 m i(v-k)x -1 mO (_k)e-kx m * (v)e 7 (4.8)
n kl v-k+l n k-l v-k+l

Igm 0 )12 m.1 3k-=o0eikx M
E Cj) e E Rv-~

n k-m0+l v-k+l

It is easily verified that the last term in (4.8) is

1(m0)1
2  lR12Re ix iCRi2(m-m0 -I)  (Reix)m-m-[ l -Re -x) m0

-0 1

n 1-Re ix  - 1 R - - i

The second term in (4.8) is

i ..... .. . . , .... ... .. . . ... .. .. . .. . . . ... . .. ... .. .,.,, -,---.. ..1 H 5 r -- " . . . . . .. - ; .. .W-AAL, I
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-1*o(-k)elk- O ( + *(vx + e- Rvnivx~

n k-i v-k+i v-w0+2

to A 1 a 1 i(v-k
Uk-i v-kI-

*(n0  (e±C~n+
2  m+i

+ 0-Rx (Re ) o O-k)eik

nR"'O 1 - Re ix kwi

and the first term is

m-1 aml2-k ( ivx 1 1 k

S k -i v -i 
k -i 

x k
W IT%(k)e1" + R'M-O L (Re)
n k-ml R0k-md+i

E WkL e + -Rg kn-i k(Reix
likk-r _m+1

m m0(kxO e - - E kO(k)e'k
nk-i k-i

n R70 1 -Re~ ]
1 ( )[R ) m 2- (Re)
n Rt"OL (1 -Rei)2

+ ( rn+)(Re ix )O~- ( ei

I eixI

The important thing to note about the three terms which make up

(4.8) is that they are ali O(). Sincel E (i 10((v)1 2) is
n n k-i
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also 0C1), this implies that vari =Cx) - 0). Under condition

(4.7) it thus follows that the truncation point m may be allowed

to become large more quickly than generally stated. Specifically,

F (x) is consistent for F,(x) so long as m - o(n).

We are now in a position to establish our most important

large sample result involving el(Fq(x)).

Theorem 4.4 Under the conditions of Theorem4.2 and the

additional assumptions that ((m) - 0(/m) and
Rm -1

1- (q) eix (q+v) ivx)  0 (Rm (
•q-l) - o (q) R) (4.9)

we have

p-lim M (x) - el(Fq (x)) -0 for all xe [-,] ,

F.(x) - F Cx)

where m - [n], 0 < a < 1
2"

-;(q) e i q x

A ii

Fx) - (Fq(x)) F'(x) - F (x) - 1- x,e
Proof:

F.(x) - Fm(x) F.(x) - F(x)

iA()iqx

Fq-l(x)-Fq-l(x)+Z O(v)eV- 1-a e
FM(W - M(x) + 7 (v)eivx

v-M+l

A __/_ iqt O ±v!±32ivx (4
(F -Fq) (q) -a (q)

.M- q (4.10)

(F=x) - =(x)) + - O--(m+)ei( e)Xo (= ) ei"x
. - m ... . . . -
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We have

i4n1 * (m+l) . i q~l R -+- 0

since

O(m+l) -O0() and m [n].

Also recall that

lim : (m _ _ ivx , i
W OW 0 @(e+1 1-Re iX

The previous considerations concerning varF m(x)] indicate that

one of the following holds

var-(FM(x) - FM(x))] - c 0 0

or

var[- (Fm (x) - Fm(x))] - as n w.

It thus follows that the denominator of (4.10) converges in prob-

ability to a random variable Z(x) which satisfies P[Z(x) # 01 1.

Therefore, in order to prove the result it is sufficient to show

that the numerator of (4.10) converges in probability to zero.

Clearly (since q -o(Ln n) and m - [nal) the first term of the

numerator goes to zero in probability as n The second term

a*(g+v) ivxis (with a q(X W Z O q • i

q v *(q)
ni"U -x _q (X) (1-,%(,) elX-¢q

-(q) q(x) - ) i(q)e ,, (ix )

I, 1-a1(q)e
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t (q) x(q+l) ix

S ,(q) - (q)

The denominator of the expression in brackets converges in prob-

ability to (1-Re ix). The numerator may be expressed as

(x) 1 (q+l)ix + ( -e ix. ( + ) 2
aq.),L(- + *--- !--1'eX)J - (1 + (q)

a (l - *(q+l) ix) - I + a (x)(1-e )-2-
q , (q)- ,(q) q - (q) i

The limit in probability of the numerator of (4.1q is thus

1
x p-lim - _(--)eiX[a (x)(1-e X)-2-  fq

1-Re n-O 't P q qr

+ -I lim !L ,(q)eiqx[a (x)(l - 0(+l) •ix )  (4.11)

1Rix n- V.- q *(q)e)-I(.1

Clearly p-limr - (-)- 0, and, as noted in Theorem 4 .2 ,

0 1
p-lrm "D- - 0 and lim a (x) 
n-W (q) n- q l-Reix

Thus, (4.13) is simply

1 urn iqx e1x- a-(x)-

(lReix) 2  i- - (q)eiqX(l ) - aq ( ,)

which by hypothesis is zero, and the proof is complete.

In light of previous considerations we point out that, if

instead of assuming (4.9) we assume that (4.7) holds and m n [a,

0 < a < 1, then the preceding proof remains valid.
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Assumption (4.9), which is crucial to the proof of

Theorem 4.4, has to do with how quickly the ratio
O(q)

approaches R. Note that since

lrm (q+l) R, (1- e )x a (x) -0
n- O(q) - (q) q

as n -. However, in order for (4.9) to be satisfied u(q+l) st
O(q)

converge to R rapidly enough to compensate for the fact that IR jRqljM.

O(Q+l) r
The convergence of O to R is the more rapid of the two, and* (q)

(4.9) is obviously satisfied, in the case where (4.7) holds. Con-

dition (4.9) may thus be regarded as an indication of how far the

Fourier coefficients of f(-) may depart from the model "O(m)-RO(m-l)-O

for m > mo" while still maintaining the property

F,(x) - •1(F (x))
p-lir 0.
WOW F,(x) - M(x)

We would indeed be remiss if the current section was concluded

without a discussion of how the previous results involving fl1q

should properly fit into a general approach to density estimation.

First, if the Fourier series estimator f Om(-) is employed to estimate f(-)0f(.)

then the results of this section provide a justification for at least

considering filq(.) as an alternative to f Om(.). The nonparametric

nature of the density estimation problem does not allow us to make

specific assumptions (such as those in Theorems 4.2 and 4.4) about

the underlying density, but this fact should not blind us from the

realization that one estimator may perform better than another in

certain situations. In Theorem 4.4 conditions were established

under which flq( would reasonably be expected to perform better



83

than fOm(.). With these thoughts in mind, the only question

which remains is the following. For a given data set, how does

one recognize if the situation calls for the use of flq(.) (for

some q) rather than fOm (.)? Two possible answers to thissoOme

question will be offered in Chapter V.

4.4 Extending Results Involving f1 ,q(-) to Higher Orders

As mentioned in the previous section, McWilliams has investi-

gated certain properties of the e2-transform. Since

f 2 q(X) = 4-2 (1 + 2Real(eFq(X))] (for q _• 2),

some insight into when f2,q(,) may be of value as an estimator of

f(') can be gained by considering the theorems of McWilliams

involving e2 (Am). The following two theorems, stated without proof,

have been proven by McWilliams (1969).

Theorem 4.5 If A * A, , a - R R 1, and
m amm

lie ia+ m R, then e 2(A) - A(
WN R+2 - m+l ,2 ,

Theorem 4.6 If the conditions of Theorem 4.5 are satisfied, and

if further R # 0 and

A- A+,
A -A

*l U

then A-e(A 2
lim A -A m+2 0 for any j
340 A. A n+4j
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Using the results of Theorems 4.5 and 4.6 and proceeding as in

Section 4 .3 one could undoubtedly establish results for e2 (Fq(x))

paralleling those of the previous section. The proofs of these

results would be somewhat more tedious than those in the first

order case (due to the increased complexity of the e2-transform),

and perhaps not altogether necessary. It seems that the proven

worth of e 2 (A ) (as evidenced in Theorems 4.5 and 4 . 6 ) in the

deterministic setting is alone a motivation for considering

f,(o) to be, in certain situations, a viable competitor of
2,q

the Fourier series estimator.

Except for the situation in which (am } e L(n,A), conditions

insuring the convergence of e n(A M) and the more rapid convergence

of en(A M) than An4 have not been established for the cases where

n > 3. However, the importance of the exactness result obtained

in Theorem 2.2 should not be overlooked. Even when the assumption

(am IL(n,A) is only approximately satisfied, e n(A m) can be expected

to be of considerable value. This fact was demonstrated in the

examples of Chapter I. Likewise using Theorem 2.2 as a justifi-

cation for considering fpA (.) to be a candidate estimator of f(.),

there remains the problem of how to select p and q. This problem

is the subject of the next chapter.
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CHAPTER V

THE PROBLEM OF SELECTING p AND q

5.1 Introduction

Up to this point, the primary objective of this work has

been to illustrate and discuss the various reasons why the class

of AEMA estimators are of value in the density estimation problem.

Armed with a suitable class of estimators, we are left, however,

with the practical problem of choosing an appropriate estimator

(based on data X,. .,X n ) from this class. Given a realization

Xl,...,x n from f(), the class of ARMA estimates of the density

function is indexed only by p and q, and so choosing an appropriate

estimate is equivalent to choosing appropriate values of p and q.

All density estimation methods have a problem similar to

the one described above. Typically a class of estimates is

indexed by a parameter, often referred to as a smoothing para-

meter, and a suitable value of this parameter must be chosen in

order to arrive at a final estimate of f(-). For example, when

employing a kernel density estimator

f(x) _ 1 n~l
1

a suitable choice of the smoothing parameter (or window width)

h must be made. Duin (1976) and Hermans and Habbema (1976) have

proposed a modified maximum-likelihood approach to the problem

of choosing h. In addition, Silverman (1980) has suggested a
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method for choosing the window width based on the so called test

graph theorem. The problem of choosing a smoothing parameter

also arises in a method proposed by Wahba (1977). Wahba's esti-

mator is (for x e [0,11 and n even)
U/2 0 (27rv) 2wivx

f(x) -E4 ev-n21+ X(2"v14 e

which is seen to be a Fourier series estimator to which a low-pass

filter has been applied. The smoothing of f(.) is accomplished by

varying the parameter X rather than the truncation point of the

Fourier series as in the method of Kronmal and Tarter. Wahba (1978)

chooses A so that the estimated MISE of f(-) is a minimum. The pro-

blem we have discussed is shared even by the primitive histogram

estimator, whose smoothing parameters are the number and size of

its class intervals.

In ARMA density estimation, the pair of values (p,q) may be

regarded as the smoothing parameter. In the remainder of this,

chapter two different methods for choosing this parameter will be

presented. In the first method we propose the use of the S-array

for choosing (p,q), since the ARMA (p,q) representation for f(')

is equivalent to assuming that' {O(v)} L(p,A) for v > q. In the

second method (p,q) is chosen in such a way that the estimated

MISE of fpjq () is minimized over a suitably restricted subclass

of ARKMA estimates.

5.2 S-Array Method of Selecting p and q

As proven in Chapter II, the assumption that a function f()
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has an ABMA (p,q) representation is essentially equivalent to

the assumption that

(4(v)) e L(p,A) for v > q.

Therefore, given estimated Fourier coefficients 4(1),

natural way of selecting (p,q) is to examine an S-array (see Gray,

Kelley, and McIntire (1978)) composed of values S (I(m)e V)(xef-or]).
n

Sp,(;(m)e'n) - c , m > q' and

S p,((m) eim x) - c 2  , m <-q'p1

supports the choice of (p',q') for the smoothing parameter (p,q) in

the sense that such a pattern supports the existence of a similar

pattern in the S-array based on S ((m)e imx ) .

Some experience with simulated data has shown that even when

a good constancy pattern exists in the parametric S-array, the

sample S-array tends to be more noisy than arrays encountered in

time series applications. The method of selecting (p,q) discussed

above must undoubtedly, then, involve a good deal of subjectivity.

For this reason the S-array should be regarded as a tool for pointing

out a restricted class of candidate ARMA estimates. Additional analy-

sis may be performed on the restricted class of estimates to deter-

mine a final estimate of f(*).

One possibility for arriving at a final estimate would be to

perform some sort of smoothing in the S-array columns where con-

stancy patterns are apparent. Tukey (1978) has suggested the use

of his 3RSSS smoothing procedure as a means of making noisy patterns

in the S-array more informative. After smoothing competing columns
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a choice for (p,q) may become obvious. A second possibility for

obtaining an estimate would be to estimate the MISE for each

candidate in the restricted class of ARMA estimates, and then

choose that estimate which minimizes the estimated MISE. A

procedure for estimating HISE is discussed in the next section.

In Chapter VI, the S-array method of selecting (p,q)

will be exemplified in the analysis of two different data sets.

The smoothing procedure discussed previously has not been investi-

gated, but we do examine the estimated WISE criterion.

5.3 MISE Criterion for Selecting p and q

Ideally we would like to choose an estimator from the ARHA

class which satisfies some optimality criterion with respect to

f(*). A criterion which is common in the estimation of probability

density functions is to seek an estimator which minimizes the WISE.

In ARMA density estimation this entails choosing (p,q) such that

MISE(f p) - Er^pq(x) -f(x)) dx]

is minimized. This, however, is an impossible task since the

optimal value of (p,q) depends on f(-), the function which is to

be estimated. Therefore, given data xl,...,xn, our approach will

be to choose as our estimate of f(-) that fPA (-) for which an

estimated HISE(f pq) is minimized. In the remainder of this

section we discuss the problem of estimating MISE (f P).

Consider

* JWf A x-fx) 2 dX f I2 1A

fr(f ,q (X)-f(x)) 2 fx " q I2,(x)dx-2frf p (x)f(x)dx
- Pq -l pq -w p,,q

+ f 2f(x)dx.
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From this expression it is clear that the value of (p,q) which

minimizes

J(f E[f f. (x)dx - 2f f (x)f(x)dxl
p'q p ,q -7w ppq

also minimizes MISE (f p,q). It is therefore sufficient to con-

sider only the estimation of J(f pq). This observation greatly

simplifies our problem.

Recalling relationship (3.6) we have

J(fpq) - E frr0,p4 (x)dx + 2fWfo, ,pq(x)PI(x)dx
-2 -17!

+ -rlg 9 (x)dx 2f f0p. X )f(x)dx - 2f'T " (x)f(x)dx]
-Ir p ,q ~-It P, q

- o,,+< )+ Ji(p,q) + 2E[f fP+ qCx)g p , q(x)dx

Now J(f0,p+q) has a particularly simple form in terms of *(1),...,

*(p+q) for which there is an unbiased estimator. We have

J(f E[2  1(+2ZA1  v 12)]- 2ffo,p+q (x)f(x)dx

a V-1sice ( -yI(v l- [i;(v) 12], +l2Iv1)

Since E( n 1 it follows that an unbiased

estimate of J(fOp+q) is

+ 2 E ( _-I(v) 12
ad 1,v + 1( ) -l - )

O~p~q 24 v-11 v l

-1 1 + 2(n+l) l 2) +
S2w-( (n-1) vi ( (n-1)

Interestingly, it is seen that the first term of 3(f O,peq) decreases

as p+q increases, but that the second term penalizes an increase

• Ie
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in p + q. Thus, J(fo,p+q) is sensitive to both the fidelity

and stability of fOCp+q(-). In addition, it is easily verified

that J(f 0 ,m+l) - Jf m ) is the same estimate of MISE (f0,M+l)

- MISE(f0,m) as that derived by Kronmal and Tarter (1968). This

fact points out a correspondence between the optimal stopping

rule of Kronmal and Tarter and J(f 0 3 ).

An unbiased estimator of the last term of J(f p,q) is

2~ f fOlp+q(x)gpsq (x)dx,

which is zero whenever the estimate f C-) satiszies condition S.
P~q

This leaves us with the problem of estimating

J(gp q) = E[fg 2  (x)dx] - 2E[f gpq (x)dF(x)].
_ P,q -If

Since~I anAq- ~ Ef 2  is fg (r dx
Since an unbiased estimator of E[] W (x)dx] -s 9g2 (x)dx

a ~ -np,q

we focus our attention on E[ftg (x)dF(x)]. To estimate this_7r PJA

quantity we propose the use of the bootstrap mechanism of Efron

(1979).

In order to illustrate the bootstrap in this setting, let

X - (C,,...,X n ) denote a random sample from f('). Further, let

p q'x - ) indicate that g pq.) is based on the sample X, and

write

R(X,F) - figPvq sK (x)dF(x).
-W

If (x , ....,xn) is a realization of X with corresponding empirical

cdf FU (), then the bootstrap estimate of E[R(X,F)] is

E[R(X*,F) ]  - E[1 1 .gp x )],

n n jlgpqX*.j- .
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where X* is a random sample from F (-). This estimate is seenn

to be Fisher consistent, or in other words, the estimate is

equal to the parameter it estimates when F (-) M F(.).n

As it is not possible to aoalytically evaluate E[R(X*,F n)],

Efron suggests that numerous samples X* be generated from F n(.)

in order to empirically evaluate the expectation to a close approxi-

mation. In our application this procedure would be prohibitive

since E[R(X*,F ) must be evaluated for numerous different candi-n

date estimators, f pq(-). Fortunately, Efron also derives a second

order approximation to E[R(X*,F n)] by expanding R(P*) - R(X*,F n) in
1

a aylor series about (l,l,...,l) where P* - (P*,...,P*) and

P* - (number of X*J's which equal x ). (R(X*,F ) depends on
i n n

X* only through P* since R is symmetric in the X*'s.)
i

Wong (1979) has derived an explicit expression for Efron's

approximation to E[R(X*,F n)] which he shows, in fact, to be a

jackknife approximation to the bootstrap. We have
n

E[R(X*,F)] R(x ,F ) - (n-l)R(x,F )n j-l CJ)nn

where x(j) = (Xl,...,X Jl,Xj+l,...,Xn). In our problem this

implies that
n 1 n (n-1) (

E[R(X*,Fn E I- Z g (x )E g (3
n J-l ni, pq,x(j) i n i-l p,q,x

An even simpler approximation is possiule by noting that (for n
reasonably large) g ) W g x(t) except possibly for
trineasnhb arhd op,q,x(j) T p,qr
t in a neighborhood of x1 . This observation gives
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n pqxj n. (xi)

ECR(X*,Fn)]= E { Q (x ) + n gp(q,x i

1 pqx() n~ 1 p~

lA UA

" pqx (j a n ^ ptql (x j

.I- P' (i)
n J~ p,q,,x(j)j

Wong (1979) uses this second type of approximation to show that

the modified maximum likelihood method of choosing a smoothing

parameter is related to the bootstrap.

If we take

J( g" (x)dx- g
pSAq p,q i- P~l1)q.X()j)

then our estimator of J(f pq) is

*A A .A AT

J(fp, q) J (fO,p+q) + J(gpjq) + 2Tf0 ,p+qX)g p~q(x)dx.

Now, if A is some subclass of the class of all ARMA estimates, then

we define f ,() to be the A ARMA estimate of f(.) if and only

if q,(-) e A and

J(fpw,qt) <J(fp) for all fpq() A.

p 'q pq p,q

The class A should be large enough to insure that an adequate

estimate of f(-) is obtained, but not so large that the computing

time required to identify fp,,q,(-) is excessive. One method of

restricting the size of A is suggested in the previous section

through the use of the S-array. One might also consider the

class AM of all AWA estimators p,q() satisfying p+q < H.
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The considerations of Chapter IV indicate that, if M is chosen

to be a function of the sample size n, it would be reasonable

to have M - o(-u).

In the next chapter, we will investigate the A ARMA

estimator by means of simulated data.

I.
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CHAPTER VI

ARMA DENSITY ESTIMATION IN PRACTICE, AND A SUMMARY

6.1 Introduction

In this final chapter the use of ARMA representations

in density estimation is exemplified with the aid of both real

and simulated data. In Sections 6.2 and 6.3 two data sets

which have appeared previously in the literature are considered.

The LRL data of Good and Gaskins (1980) and the Maguire data of

Maguire, Pearson, and Wynn (1952) are analyzed, and density

estimates are obtained using the results of Chapter V. The

effectiveness of the estimated MISE criterion for choosing p

and q is evaluated in Section 6.4 by means of simulated data.

The results of the simulation study show the criterion to be

quite effective in distinguishing between density estimates

which have important differences in ISE.

Section 6.5 is devoted to summarizing the density estima-

tion results obtained in this work. In addition, some areas for

future research in ARMA density estimation are indicated.

6.2 The LRL Data

Good and Gaskins (1980) have analyzed a data set, which

they call the LRL (Lawrence Radiation Laboratory) data, con-

sisting of "n - 25,752 events from a scattering reaction". The

data are recorded in the paper of Good and Gaskins in the form
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of a frequency table made up 172 bins of width 10 NeV each.

The ith bin includes n events, and the bins are centered ati

the values (in MeV)

- 285 + 10(i-l), i - 1,2,...,172.

In the analysis to follow we consider the transformed

data

x, y (2y1 - 2280) , 1 - 1,2,...,172.

The Fourier coefficients *(v), v - 1,2,..., associated with the

density f(-) of the transformed data are estimated by
=1172 ivx

,(v) - 1 nje- , v -,2,(6.1)

J-l

The alm of Good and Gaskins in analyzing the LRL data was

to obtain an estimate of the underlying probability density by

using their maximum penalized-likelihood method (see Good and

Gaskins (1971)), and to then describe a procedure for assessing

the likelihood that a bump found in the estimate is also present

in the underlying density. Our purpose in analyzing the LRL

data is to

(i) illustrate the cogent information contained in the

S-array about the type of ARPM estimate which should

be fit, and

(ii) to obtain an estimate comparable to that of Good

and Gaskins.

In this example, the estimated M4ISE criterion for choosing (p,q)
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is considered only for estimates with p - 0, as some modifi-

cation of the jackknife approximation to the bootstrap is needed

for grouped data.

Table 6.1 shows a portion of the S-array for the sequence

{(-l)m;(m)I, where the *(m) are as defined in (6.1). The array

based on {(-l) *(m)1 has been tabled since it shows a much clearer

constancy pattern than does the array based on {;(m)}. This

behavior is caused by the fact that,

as will be seen shortly, estimates of the density f(.) have

considerably more "power" near x - 0 than near x - r.

The constancy apparent in the first two columns of the

array in Table 6.1 gives clear preference to ARMA estimates with

p a 1 or p - 2. However, a fuller understanding of the informa-

tion contained in Table 6.1 can be gained by initially consi-

dering the estimates f1,0(
-) and f2,0 (-), which are plotted in

Figures 6.1 and 6.2 respectively. From these two figures it

is clear that the constancy in the first column of the S-array

corresponds to a bump (in the terminology of Good and Gaskins)

at about x - -1.40, and the constancy in the second column

corresponds to this same bump and another smaller bump at about

x - .55. Interestingly, f2,0 (.) is virtually the same estimate

as that obtained by Good and Gaskins except for the presence of

11 additional,'very small bumps in their estimate.

An area for future research is establishing a method of

transforming the original sequence of estimated Fourier coeffi-
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cdents in such a way that the dominating effect of major peaks

is filtered out. In the current example, such a method would

allow us to remove the effect of the two major peaks (seen in

Fig. 6.2) so that the possible presence of smaller peaks could

be carefully investigated.

In the absence of a suitable filtering technique, we

arrive at a final estimate of f(-) by choosing a Fourier series

estimate fO'm(.) which satisfies m e (1,2,...,501 and

_• ) for k - 1,2,...,50.

Note that 50 is certainly not too large a truncation point to

consider in this case because of the extremely large size of

the sample.

The minimum value of J(fo,k) (for k - 1,2,...,50) occurs

at k - 42. The estimate f0, 42 (.) is plotted in Figure 6.3 and

nine of the thirteen bumps of Good and Gaskins are identified

(using their numbering scheme). Our much simpler analysis seems

to have arrived at essentially the same results as those of Good

and Gaskins, although collaboration with a subject matter expert

would be essential to correctly interpret differences in the esti-

mates.

As a final observation concerning the LRL data we point

out the similarity of 2,0(-) and i0,42(o), which is striking when

one considers that f2,0(-) is based only on f(l) and W(2). The

paucity of parameters required for f2,0
(-) to correctly describe

the major features of the LRL data becomes important in smaller

samples. This fact will be illustrated in Section 6.4.

- -
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6.3 The Maguire Data

The data set to be analyzed in this section appears in

Carmichael (1976) and has been studied by Maguire, Pearson

and Wynn (1952), Boneva, Kendall and Stefanov (1971), and, in

a density estimation context, by Carmichael (1976). The data,

which we shall refer to as the Maguire data, consists of 109

"time intervals in days between explosions in mines involving

more than ten men killed, from December 6, 1875 to May 29, 1951."

For our purposes, the 109 values will be regarded as independent

realizations of a random variable whose density function we wish

to estimate.

An initial look at a histogram of the Maguire data indi-

cates the possibility of an underlying exponential type density.

Therefore, since Fourier series approximation methods work best

for functions whose tails are similar, we have employed what

Carmichael refers to as symmetrization. Symnetrization entails

transforming the original data to the interval [0,1r], and then

estimating the density f*(-) of the transformed data by first

estimating

f(x) - ,f*(Ix), x[ W.

The evenness of f(o) implies that

#(v) - fw(coxvx - isinvx) f(x)dx
-t

= 2 f cosvx f(x)dx
0

= f~coxvi f*(x)dx, Ivi 0,1,2,...
0
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Given the previous expression for O(v), we form estimates

-1 109
109 Z cos vxj, Iv! - 0,1,2,...

J-i

of *(v), where xj, J - 1,...,109, is the Maguire data rescaled

to the interval [O,]. (The transformation x =i y wasj 1630 j
used since 1630 was the longest number of days between explo-

sions.) Estimates

f* (x) - 2f X) , xc [0,er],
p ,q ptq

of the density f*(-) may then be constructed, where

fpq(X) [1 + 2Real{ep(Fq(x)) - FoX)11

and

W x - vE k (v)e'1.
v-k

A portion of the S-array for {(-l)V,(v)l is given in

Table 6.2. Note that, since in this case O(v) is real-valued,

the S-array is also real-valued. Based on Table 6.2, fl,0 (.)

and f1,2(.) seem to be the best supported estimates of f(.),

and certainly no estimate f pq(.) for p > 1 is supported. For

purposes of the MISE critierion of Chapter V, this pattern in

the S-array suggests that, among estimates f pq(.) ( p > 0), we

limit consideration to estimates with p - 1.

In order to objectively choose an estimate of f*(.),

we shall calculate J(f* for each estimate in the class

A - {f*,(-): p - 0,1 and p + q_: 20).

Since O(v) is estimated differently here than in previous chapters,

the estimate J(f p) derived in Chapter V must be modified
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TABLE 6.2

MAGUIRE DATA S-ARRAY FOR {(-l)V,(v)}

rnu 1 2 3 4 5 6

-6 -2.3442 4.1873 7.6413 .6243 31.5796 .5846

-5 -2.6173 2.2878 -1.1070 -24.0702 25.8274 -3.2688

-4 -2.5935 -1.9669 54.7387 -27.1260 82.1131 -4.2798

-3 -2.6195 -57.7808 106.6615 -13.2873 -1.5643 6.9471

-2 -2.2463 2.3738 1.9639 -4.6324 -6.4719 4.8715

-1 -2.2317 81.9580 3.3973 -9.9555 -8.5664 50.7821

0 -1.8119 1.8528 -1.1989 1.0701 -1.2228 1.2530

1 -1.8024 30.1227 - .7049 2.6439 -1.0416 -1.3733

2 -1.6175 1.5569 -1.5230 1.7872 - .4512 6.5955

3 -1.6275 .6980 12.5592 4.2834 -5.1103 3.7425

4 -1.6183 -12.1080 4.3602 3.4221 68.0605 2.8217

5 -1.7439 4.6512 -3.5795 -4.6306 19.4732 -.4310

* * ~ --*-
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slightly. We have

MISEdf5  ) E[J'(f* ,(x) -f*(x)) 2dxl
p q 0~

and

J"f* E{f[f* W 2f'i , (x)dF*(x)}.
p,q = Pf,q(0 P]q

Proceeding as in Chapter V, it may be verified that the

appropriate estimate of J(f* ) is

+ 2(+v.) ] + 2 JvJf*' )i ( + (ni1 ()+~ ) Z (l"(2v)) ,p0O,
p q W ( V-1i ~ v-1

and
"2 4 (j

J(f~q J(f 5 ) + 4f g (x)dx - -E g Nx
pq o p~q~(j) J

+ 8f"f (X)g (x)d, p > 0
0 Op+q pq

Table 6.3 contains the value of J(f*,) for each of the
p,q)

estimates in A, and shows the minimum of J(f,* ) to occur at

This estimate is plotted in Figure 6.4, and, for

the sake of comparison, the estimate f*, 0 (.) (at which 3f,

is minimized) is plotted in Figure6.5. The estimate ,0

is seen to be smoother in the tail than is f* 1 2 () a feature

which we noted to be a characteristic of ARMA approximators.

Whether or not the extra smoothing done by f*10(.) is warranted

might best be judged by someone knowledgeable with the physical

situation which generated this data.

An interesting aspect of Table 6.3 is the magnitude of

J(f, 0 ) relative to the minimum value of J(f* ). A comparison

of these two numbers confirms that a low frequency component is
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TABLE 6.3

VALUES OF J(f* ) FOR THE MAGUIRE DATA
psq

k (~k ~ Ja a.-

1 -.7360 -1.1907
2 -1.0037 -1.1939
3 -1.1021 -1.1807
4 -1.1363 -1.1762
5 -1.1449 -1.1687
6 -1.1468 -1.1828
7 -1.1502 - .9564
8 -1.1695 -1.1538
9 -1.1805 -1.2262
10 -1.2075 -1.1659
11 -1.2179 -1.2266
12 -1.2291 .2.571
13 -1.2250 -1.2215
14 -1.2205 -1.1965
15 -1.2141 -1.2155
16 -1.2085 -1.2176
17 -1.2039 -1.2222
18 -1.2057 -1.2138
19 -1.2091 -1.1927
20 -1.2106 -1.1490
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the dominant feature of the Maguire data, a fact which was

predicted by the first column of the S-array.

A final coment about this data set concerns the ability

of J(f* ) to distinguish between differing estimates. Figure

6.6 shows a plot of the estimate f* (.), which has the third

largest value of J ,f* in Table 6.3. Note that f,6 .() does

not have its maximum at zero, which is true of only one of the

other estimates considered. The other estimate of which this

is true, f 1*), maximizes J(fq ) and is such that (o -

-11.87. This is evidence that the criterion J(f* ) is able to
p,,q

identify the poorer estimates of f*(-).

6.4 A Simulation Study

The purpose of this section is to investigate

(i) the effectiveness of the MISE criterion for

selecting (p,q) in distinguishing between

estimates which have important differences

in ISE, and

(ii) the possible savings in ISE which may be

attained by using ARMA,rather than Fourier

series, density estimation.

In order to accomplish the above, simulations (which will here-

after be referred to as Simulations 1, 2, and 3) involving

three different density functions have been carried out. A

description of these simulations follows.

Simulation 1. In this study, 25 independent random

samples, each of size 100, were generated from the Beta (12,3)

distribution using the IMSL subroutine GGBTR. The data
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Yis £ 1,2,...,100, in each sample was transformed to x. -

w(2y - 1), 1 - 1,2,...,100 (so that the estimated density,

fl'), is the Beta (12,3) density shifted and rescaled to fill

[-wr,]). Then, for each sample, J(f';q) was calculated for,

each estimate in the class

A (fp (.): p + q < 10);

and All, A1 2, and A13 A estimates were identified, where

A12 - fq(0): q - 1,2,...,l01, and

13- (fO.-: pf- l,2,...,10J.

Finally, for each of these three estimates, f2 -.(.) say,
p,q

Ir 2
ISE(f.) - f (f2 -(x) - f'(x)) dx

pq -r ptq

was evaluated.

Simulation 2. In this simulation, 25 independent random

samples of size 50 were generated from the density function

VON)- 2e'41xl I

U--4w Wr
(1.e_ ) [_,(,

a truncated Laplace density. This was done by first generating

samples from the U(0,1) distribution (using IHSL subroutine

GGUBS), and then employing the probability integral transforma-

tion. For each sample, 3(f" ) was calculated for each estimate
pq

in

A (f t (.): p - 0,1 and p + q 101,
21 p 9q

and A21, A 2 2 , and A 23 ARMA estimates were identified, where
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A22 - {f,q(f)- q 1,2,...,101

and

A23 - A22 U (f,q(): q - 0,1,...,41

For each of these three estimates, ISE(f",) was evaluated.

Simulation 3. In this final simulation, 15 indepen-

dent random samples of size 100 were generated from the density

(pictured in Figure 6.7)

f"' (x) - 1-11 + 2Real e2 (F4 (x))}] I[_i,,] (x),

where

74(x) - E #(v)efc and {4(v)}
v 1

o- the sequence of estimated Fourier coefficients from the LRL

data. The samples were generated as in Simulation 2, although

in this case values of the inverse cdf had to be evaluated

numerically. For each sample, Mofo' ) was calculated for each
piq

estimate in

A31 , ' {( ): p - 0,1,2 and p + q. 10),

and the A31 and A32 AR estimates were identified, where

A32 - (f ',q(*): q - l,2,...,l0}

(Reasons for considering the classes of estimates defined in this

and the previous simulation are discussed below.) Finally,

iSE(fu:q) was calculated for these two estimates.

The results of Simulations 1,2, and 3 are sumarized in

Tables 6.4 - 6.6. In order to define some descriptive measures
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which appear in Table 6.4, let fijk(.) be the Atj ARMA estimate

in the kth repetition of Simulation i. Then
I L z E(_ijk)

= m k-i

and

2 1 mi - 2
[SD(ISE)ij] 2 mi 1 kZ [ISE(fijk) - ISEij]2

where m1 = m2 - 25 and m3 - 15. The quantity Fj is the

proportion of repetitions in the ith simulation for which

fijk ( ,) = fi2k(*), i.e., F is the proportion of cases in

which the Ati ARMA estimate is a Fourier series estimate.

Finally, for j 0 2, let

ISE(f I SYik- [n ilk s
ISE(fi12k) i

where S is the set of m i(1-F7) repetition indices k for

which ISE(fijk) 0 ISE(fi2k). Then, based on the Wilcoxon signed-

rank statistic for the yijk' the Hodges-Lehmann estimate of the

median of the Yijk distribution is denoted by eij" Hence, the

quantity Rij e ij is an estimate of the median, Rij, of the

conditional distribution of

ISE(f j

ISE(fik)

given that ISE(f il .

ISE(f i2k)

Table 6.5 contains the results of three tests of

hypothesis which address the question of whether or not a
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savings in ISE results from using ARMA density estimation rather

than Fourier series density estimation. The three hypotheses

tested are

H 01* R -1 vs. H11 < 1,

H02 R23 21 vs. HI2:R 2 3 < 1,

and

R03 R31 1 vs. R13 R31 < I.

The test statistic for H01 vs H is the Wilcoxon signed-rank

statistic

V -k r( iyljkI)I(O,) (Yijk)'

ik Sij

where r(-) denotes rank. The reason for the use of the log

transformation is that, since typically the distribution of ISE

is skewed,

[nIISE6 iik J A .e InSEdilk] - n(ISE~fi2k)

is more nearly symmetrically distributed about zero under H01

than is ISE(fijk) - ISE(fi2k) about its mean. This is an important

consideration since the Wilcoxon test is based on an assumption

of symmetry. The results of the above tests are indicated in

Table 6.5 by P values which are defined by Pij - P(W+< w i)

where W is a random variable having the distribution of a

Wilcoxon signed-rank statistic. In addition, 95Z confidence
intervals for the parameters Rij are given.

The results in Table 6.5 address the second of the two
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considerations which were the intent of our investigation at

the beginning of this section. These results are strong evi-

dence that a savings in ISE is realized if the MISE criterion

of Chapter V is allowed to choose from a class of ARMA (p>O.

q > 0) estimates rather than a class containing only Fourier

series estimates. It is important to note, though, that the

results obtained are conditional on the particular densities

considered, the sample sizes used, and the classes of ARMA

estimates chosen for consideration. Perhaps the most important

of these three points is the choice of a class of estimates.

The estimates R and R23 in Table 6.4 indicate that the number

of ARMA estimates in the chosen class can be an important con-

sideration. Further, it is not clear how the results of Tables

6.4 and 6.5 would have been affected if the classes A21 , A23,

and A31 had included estimates with larger values of p. The

restriction of the size of A and A was motivated by the21 23

fact that, in some initial repetitions of UL4ation I ore-

vious to those upon which Tables6.4 and 6.5 are based), the

S-array for ((-1)v*(v)} showed a good constancy pattern in

column 1. A similar statement is true regarding A3 1 and Simula-

tion 3, in which case constancy was apparent in the first two

columns of a typical S-array.

The first of the two points which were to be investigated

in this section concerned the ability of the MISE criterion to

distinguish between estimates having important differences in

ISE. Evidence of this ability is given in Table 6.6 . In
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(1) The class of Fourier series and autoregressive density

estimators is a subclass of the class of ARHA estimators.

(2) The ARMA estimator f p,q(.) estimates an approximator

f pq(.) which was shown to be related to the en-transform.

This relationship implies that f p(X) is often a better

approximation to f(x) than is f0 ,p+q(X), a Fourier series

approximator.

(3) The estimator fpq (e) may be expressed in terms of a

quantity which was shown to be an adaptive, generalized

Jackknife statistic.

(4) The mixture of densities having autoregressive represen-

tations is, in general, a density which has an ARMA repre-

sentation. This result Implies that ARMA representations

often require fewer parameters to adequately fit a density

than do autoregressive representations.

(5) In a probability sense, the estimator fl,q(-) possesses

(under certain conditions) a more rapid convergence

property analogous to that possessed by e1 in the deter-

ministic setting.

(6) Two solutions were proposed to the problem of selecting

an appropriate estimate from the class of ARMA estimates.

One solution utilizes the S-array, and in the other solu-

tion an estimator is sought which will minimize MISE(f p,q).

(7) Simulation studies indicate that (for the densities consi-

dered) a savings in ISE results from allowing the MISE

criterion to choose from a class of ARMA (p > 0, q > 0)

estimates rather than from a class of only Fourier series

estimates.
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TABLE 6.6

THE ABILITY OF THE MISE CRITERION TO DISTINGUISH

ESTIMTES WITH DIFFERENT VALUES OF ISE

Type of Estimate P' P"

A 88.00 63.64~11

A13 100.00 100.00

A21 68.00 58.82

A23 64.00 81.25

A 73.33 90.9131

Noces:

1. P' is the percentage of cases in 'which

2. Among the cases satisfying .(f ijk 12k). P" is the

percentage of cases in which the sign of f - f

and ISE(fijk) - ISE(fi2k) are the same.
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addition, it is noted that for all three simulations the esti-

mates which had the larger values of J(f pq) were consistently

among the poorer (in terms of ISE) estimates.

The final remarks to be made in this section concern

Simulation 3. In Section 6.2 it was observed that the first

two estimated Fourier coefficients of the LRL data contained

essentially all the information about the main features of

that data set, a fact that is not detected by Fourier series

estimates, f0,q(-). With this in mind, one of the aims of

Simulation 3 was to illustrate that, if moderate sized samples

were generated from a density like that of the LRL data, a

parsimonious ARMA estimate would be preferred to a Fourier

series estimate. That this is the case is evidenced by

Table 6.5 and the average number of Fourier coefficients,

N(A3j ), used by the A3j ARMA estimates of Simulation 3. we

have

N(A31) - 4 and N(A32) - 5.47,

and thus the considerable savings in ISE obtained using the A31

ARMA estimate occurred even though the ARMA estimates were, on

the average, based on fewer fitted parameters than the Fourier

series estimates.

6.5 A Summary

A new class of estimators of a probability density func-

tion, referred to as the class of ARIA estimators, has been

introduced in this work. The piincipal results obtained con-

cerning this class of estimators may be summarized as follows.

.1. ... ....
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Although some important results have been obtained in

this work, there remain numerous topic. for future research

in ARMA density estimation. Some of these topics, such as the

establishment of more general large sample properties, the

routine choice of a class of estimates, and further investi-

gation of the problem of selecting p and q, have been alluded

to previously. However, perhaps the most important area for

future research is a large-scale comparison of APH4A density

estimation to other common methods of density estimation.

Even though new, different methods of viewing an old problem

are of value, it is probably desirable to be somewhat economic

with regard to the number of new methods proposed. For this

reason, before being recommended f or widespread use each new

method should be validated against existing methods. A part

of this validation for ARMA density estimation has been accom-

plished in this work, and the results thus far obtained indicate

the possibility of a valuable new method.
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